Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expedition to Mid-Cayman Rise identifies unusual variety of deep sea vents

21.07.2010
Method included first use of Nereus hybrid vehicle in 'autonomous' mode

The first expedition to search for deep-sea hydrothermal vents along the Mid-Cayman Rise has turned up three distinct types of hydrothermal venting, reports an interdisciplinary team led by Woods Hole Oceanographic Institution (WHOI) in this week's Proceedings of the National Academy of Sciences. The work was conducted as part of a NASA-funded effort to search extreme environments for geologic, biologic, and chemical clues to the origins and evolution of life.

Hydrothermal activity occurs on spreading centers all around the world. However, the diversity of the newly discovered vent types, their geologic settings and their relative geographic isolation make the Mid-Cayman Rise a unique environment in the world's ocean.

"This was probably the highest risk expedition I have ever undertaken," said chief scientist Chris German, a WHOI geochemist who has pioneered the use of autonomous underwater vehicles (AUVs) to search for hydrothermal vent sites. "We know hydrothermal vents appear along ridges approximately every 100 km. But this ridge crest is only 100 km long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected – but then finding out that our data indicated that each site represents a different style of venting – one of every kind known, all in pretty much the same place – was extraordinarily cool."

The Mid-Cayman Rise (MCR) is an ultraslow spreading ridge located in the Cayman Trough – the deepest point in the Caribbean Sea and a part of the tectonic boundary between the North American Plate and the Caribbean Plate. At the boundary where the plates are being pulled apart, new material wells up from Earth's interior to form new crust on the seafloor.

The team identified the deepest known hydrothermal vent site and two additional distinct types of vents, one of which is believed to be a shallow, low temperature vent of a kind that has been reported only once previously - at the "Lost City" site in the mid-Atlantic ocean.

"Being the deepest, these hydrothermal vents support communities of organisms that are the furthest from the ocean surface and sources of energy like sunlight," said co-author Max Coleman of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That's not an option for possible life deep in the ocean of Jupiter's icy moon Europa, prioritized by NASA for future exploration. However, organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa, and this work will help us understand what we might find when we search for life there."

Approach

While vent sites occupy small areas on the sea floor, the plumes formed when hot acidic vent fluids mix with cold deep-ocean seawater can rise hundreds of meters until they reach neutral buoyancy. Because these plumes contain dissolved chemicals, particulate minerals and microbes, they can then be detected for kilometers or more away from their source as they disperse horizontally in the ocean. The chemical signatures of these plumes vary according to the type of vent site from which they originated.

The three known types of vent sites are distinguished by the kinds of rock that host the sites. The first type of vents occur throughout the world's mid-ocean ridges and are hosted by rocks that are rich in magnesium and iron --called mafic rocks. The second and third types of vent sites are hosted in rocks called ultramafic that form deep below the seafloor and are composed of material similar to the much hotter lavas that erupted on Earth's very earliest seafloor, thousands of millions of years ago.

The discovery of ultramafic-hosted vent sites such as those on the Mid-Cayman Rise could provide insight into the very earliest life on our planet and the potential for similar life to become established elsewhere," said German.

For this mission, German and his colleagues used the plumes in the search for hydrothermal vents, employing sensors mounted on equipment and robotic vehicles to track the chemicals back to their source. This expedition used a CTD (conductivity, temperature, and depth) array augmented with sensors to detect suspended particles and anomalous chemical compositions (the latter sensor courtesy of Ko-ichi Nakamura from AIST in Tsukuba, Japan) mounted on both a water sampling rosette and the hybrid vehicle Nereus, a deep-diving robot that can operate in both in tethered and free-swimming modes.

Using the CTDs and Nereus in "autonomous" or free-swimming mode, the team sniffed out deep-sea plumes originating from the seafloor hydrothermal vents. Using a combination of shipboard and shore-based analyses of water samples for both their chemical and microbial contents, the team was then able to track the plumes toward their sources as well as to determine the likely nature of the venting present at each site. The ultimate goal was to switch Nereus into tethered or "remotely operated" (ROV) mode during the latter stages of the cruise and dive on each vent site to collect samples using Nereus' robotic manipulator arm.

"Part of the excitement of this NASA-funded project was the success of deploying a full-ocean-capable tethered vehicle to search for vents at 5000 m from the R/V Cape Hatteras, which, at 41 meters in length, is one of the smallest ocean-going ships in the national fleet. This is a first," said Cindy Lee Van Dover, co-author on the study and director of the Duke University Marine Laboratory.

The first two sites the team identified are extremely deep and were named Piccard and Walsh in honor of the only two humans to dive to the Challenger Deep – the deepest part of the world's ocean. The plume detected at the Piccard site – 800 meters deeper than the previously known deepest vent – was comparable to plumes from the "Type 1" vent sites, first found in the Pacific Ocean in 1977.

"We were particularly excited to find compelling evidence for high-temperature venting at almost 5000m depth. We have absolutely zero microbial data from high-temperature vents at this depth," said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory (MBL) in Woods Hole. Huber and MBL postdoctoral scientist Julie Smith participated in this cruise to collect samples, and all of the microbiology work for this paper was carried out in Huber's laboratory. "With the combination of extreme pressure, temperature, and chemistry, we are sure to discover novel microbes in this environment," Huber added. "We look forward to returning to the Cayman and sampling these vents in the near future. We are sure to expand the known growth parameters and limits for life on our planet by exploring these new sites."

The Walsh plume also exhibited signals characteristic of a high temperature site, but with a chemical composition (notably the high methane-to-manganese ratio) typically found at a high temperature, ultramafic hosted "Type 2" vent site. The third site – which the team have named Europa, after the moon of Jupiter – most closely resembles the "Lost City" vent site in the mid-Atlantic ocean— to date the only confirmed low-temperature "Type 3" site.

Half way through the six-day leg in which Nereus was converted into ROV mode, tropical storm Ida intervened and stopped the team from viewing or sampling the vent site. Though they had come within

"Given the range and diversity of systems present, and now that we have established exactly where the sites are and what they look like, we really can't wait to get back and collect first samples with our ROV Jason," said German. "This region has the potential to develop into an exciting natural laboratory with plenty of potential for repeat visits and long-term experiments over the decade ahead."

By exploring this extreme and previously uninvestigated section of the Earth's deep seafloor, the researchers seek to extend our understanding of the limits to which life can exist on Earth and to help prepare for future efforts to explore for life on other planets.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Stephanie Murphy | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>