Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence that comets could have seeded life on Earth

06.03.2013
It’s among the most ancient of questions: What are the origins of life on Earth?
A new experiment simulating conditions in deep space reveals that the complex building blocks of life could have been created on icy interplanetary dust and then carried to Earth, jump-starting life.

Chemists from the University of California, Berkeley, and the University of Hawaii, Manoa, showed that conditions in space are capable of creating complex dipeptides – linked pairs of amino acids – that are essential building blocks shared by all living things. The discovery opens the door to the possibility that these molecules were brought to Earth aboard a comet or possibly meteorites, catalyzing the formation of proteins (polypeptides), enzymes and even more complex molecules, such as sugars, that are necessary for life.

“It is fascinating to consider that the most basic biochemical building blocks that led to life on Earth may well have had an extraterrestrial origin,” said UC Berkeley chemist Richard Mathies, coauthor of a paper published online last week and scheduled for the March 10 print issue of The Astrophysical Journal.

While scientists have discovered basic organic molecules, such as amino acids, in numerous meteorites that have fallen to Earth, they have been unable to find the more complex molecular structures that are prerequisites for our planet’s biology. As a result, scientists have always assumed that the really complicated chemistry of life must have originated in Earth’s early oceans.

In an ultra-high vacuum chamber chilled to 10 degrees above absolute zero (10 Kelvin), Seol Kim and Ralf Kaiser of the Hawaiian team simulated an icy snowball in space including carbon dioxide, ammonia and various hydrocarbons such as methane, ethane and propane. When zapped with high-energy electrons to simulate the cosmic rays in space, the chemicals reacted to form complex, organic compounds, specifically dipeptides, essential to life.

At UC Berkeley, Mathies and Amanda Stockton then analyzed the organic residues through the Mars Organic Analyzer, an instrument that Mathies designed for ultrasensitive detection and identification of small organic molecules in the solar system. The analysis revealed the presence of complex molecules – nine different amino acids and at least two dipeptides – capable of catalyzing biological evolution on earth.

The research was supported by the National Science Foundation and the Mathies Royalty Fund at UC Berkeley.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>