Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of carbonate minerals found on Mars: Warm and wet climate would have been favorable for life

14.06.2010
Mössbauer Group identifies carbonate mineral formation in the Columbia Hills – consistent with the reported findings for meteorite ALH 84001

Some four billion years ago, our neighbor planet Mars had a warm and wet climate and would thus have provided a much more favorable environment for the development of life than today.

This is the conclusion following a recent study undertaken with several instruments on one of NASA's Mars Exploration Rovers (MER), Spirit. The main body of evidence was provided by the 2006 survey results obtained by NASA's rover 'Spirit' in the Columbia Hills region of Mars using the Mössbauer spectrometer developed in Mainz.

"Working in collaboration with an international group, the Mössbauer team has now for the first time been able to demonstrate the presence of deposits of carbonate minerals in situ on the Martian surface. This is the kind of proof that we have long been looking for to support the hypothesis advanced some decades ago that the planet once had a warm and wet climate," explains Dr Göstar Klingelhöfer of Johannes Gutenberg University Mainz. The results of the study have now been published in the journal 'Science'.

During the project, the researchers worked on the assumption that, in order to have had a warmer and wetter climate during its early history, Mars would have to have had a much denser atmosphere with considerably higher levels of CO2 than today. This sort of atmosphere would result in the formation of rocks with high carbonate mineral content. Analyses conducted over a period of several years have enabled the Mössbauer Group to identify a rocky outcrop of just this kind on Mars that contains significant amounts of magnesium iron carbonate. "Although we were already aware that the data obtained from Columbia Hills was inconsistent with standard theories, we did not quite know how to interpret it," Klingelhöfer continues. His team developed the miniaturized Mössbauer spectrometer that is attached to the rover and is designed to analyze iron-containing minerals on the surface of Mars. Over the past several years, NASA scientist Richard Morris has been analyzing the results in a series of laboratory experiments. Findings reported by two other rover instruments – the alpha particle X-ray spectrometer developed by the Max Planck Institute for Chemistry in Mainz and a thermal emission spectrometer – corroborate the evidence: The rocky outcrop dubbed 'Comanche' consists of nearly 20 percent carbonates. Rocks with such a high content of carbonates can only have formed in the presence of large volumes of water with a more or less neutral pH in a dense, warm, moist CO2-rich atmosphere - conditions that would be ideal for life. "This carbonate is exactly what we have always been looking for," claims a happy Göstar Klingelhöfer in view of the findings, which demonstrate the presence of mainly magnesium iron carbonate and the silicate mineral olivine in the rocks. And Steve Squyres of Cornell University in Ithaca, New York, is equally enthusiastic: "This is one of the most significant findings by the rovers." Squyres is Principal Investigator of the Mars Exploration Rover Mission and co-author of the recent ‘Science’ article.

Incidentally, this composition is similar to that reported for the carbonate globules present in Mars meteorite ALH 84001 discovered in the Allan Hills in Antarctica. In the late 1990s, the Allan Hills meteorite made headline news worldwide when researchers claimed that certain structures within it may represent biological signatures. Like the Comanche outcrop in the Columbia Hills in the Martian Gusev crater, ALH 84001 is estimated to be some four billion years old. The scientists postulate that the Gusev rocks, with their significant 16 to 34 percent content of carbonates, were probably deposited from a carbonate-rich solution with a near neutral pH under hydrothermal conditions – similar to those obtained in the hot springs on Iceland and Spitzbergen – during a period of volcanic activity in the so-called Noachian epoch some 3.5 to 4.6 billion years ago.

Weitere Informationen:
http://www.uni-mainz.de/eng/13618.php
http://www.ak-klingelhoefer.chemie.uni-mainz.de
http://www.nasa.gov/mission_pages/mer/news/mer20100603.html
http://www.sciencemag.org/cgi/content/abstract/science.1189667

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>