Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of carbonate minerals found on Mars: Warm and wet climate would have been favorable for life

14.06.2010
Mössbauer Group identifies carbonate mineral formation in the Columbia Hills – consistent with the reported findings for meteorite ALH 84001

Some four billion years ago, our neighbor planet Mars had a warm and wet climate and would thus have provided a much more favorable environment for the development of life than today.

This is the conclusion following a recent study undertaken with several instruments on one of NASA's Mars Exploration Rovers (MER), Spirit. The main body of evidence was provided by the 2006 survey results obtained by NASA's rover 'Spirit' in the Columbia Hills region of Mars using the Mössbauer spectrometer developed in Mainz.

"Working in collaboration with an international group, the Mössbauer team has now for the first time been able to demonstrate the presence of deposits of carbonate minerals in situ on the Martian surface. This is the kind of proof that we have long been looking for to support the hypothesis advanced some decades ago that the planet once had a warm and wet climate," explains Dr Göstar Klingelhöfer of Johannes Gutenberg University Mainz. The results of the study have now been published in the journal 'Science'.

During the project, the researchers worked on the assumption that, in order to have had a warmer and wetter climate during its early history, Mars would have to have had a much denser atmosphere with considerably higher levels of CO2 than today. This sort of atmosphere would result in the formation of rocks with high carbonate mineral content. Analyses conducted over a period of several years have enabled the Mössbauer Group to identify a rocky outcrop of just this kind on Mars that contains significant amounts of magnesium iron carbonate. "Although we were already aware that the data obtained from Columbia Hills was inconsistent with standard theories, we did not quite know how to interpret it," Klingelhöfer continues. His team developed the miniaturized Mössbauer spectrometer that is attached to the rover and is designed to analyze iron-containing minerals on the surface of Mars. Over the past several years, NASA scientist Richard Morris has been analyzing the results in a series of laboratory experiments. Findings reported by two other rover instruments – the alpha particle X-ray spectrometer developed by the Max Planck Institute for Chemistry in Mainz and a thermal emission spectrometer – corroborate the evidence: The rocky outcrop dubbed 'Comanche' consists of nearly 20 percent carbonates. Rocks with such a high content of carbonates can only have formed in the presence of large volumes of water with a more or less neutral pH in a dense, warm, moist CO2-rich atmosphere - conditions that would be ideal for life. "This carbonate is exactly what we have always been looking for," claims a happy Göstar Klingelhöfer in view of the findings, which demonstrate the presence of mainly magnesium iron carbonate and the silicate mineral olivine in the rocks. And Steve Squyres of Cornell University in Ithaca, New York, is equally enthusiastic: "This is one of the most significant findings by the rovers." Squyres is Principal Investigator of the Mars Exploration Rover Mission and co-author of the recent ‘Science’ article.

Incidentally, this composition is similar to that reported for the carbonate globules present in Mars meteorite ALH 84001 discovered in the Allan Hills in Antarctica. In the late 1990s, the Allan Hills meteorite made headline news worldwide when researchers claimed that certain structures within it may represent biological signatures. Like the Comanche outcrop in the Columbia Hills in the Martian Gusev crater, ALH 84001 is estimated to be some four billion years old. The scientists postulate that the Gusev rocks, with their significant 16 to 34 percent content of carbonates, were probably deposited from a carbonate-rich solution with a near neutral pH under hydrothermal conditions – similar to those obtained in the hot springs on Iceland and Spitzbergen – during a period of volcanic activity in the so-called Noachian epoch some 3.5 to 4.6 billion years ago.

Weitere Informationen:
http://www.uni-mainz.de/eng/13618.php
http://www.ak-klingelhoefer.chemie.uni-mainz.de
http://www.nasa.gov/mission_pages/mer/news/mer20100603.html
http://www.sciencemag.org/cgi/content/abstract/science.1189667

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>