Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Evidence for an Ancient Grand Canyon

30.11.2012
Caltech study supports theory that giant gorge dates back to Late Cretaceous period

For over 150 years, geologists have debated how and when one of the most dramatic features on our planet—the Grand Canyon—was formed. New data unearthed by researchers at the California Institute of Technology (Caltech) builds support for the idea that conventional models, which say the enormous ravine is 5 to 6 million years old, are way off.

In fact, the Caltech research points to a Grand Canyon that is many millions of years older than previously thought, says Kenneth A. Farley, Keck Foundation Professor of Geochemistry at Caltech and coauthor of the study. "Rather than being formed within the last few million years, our measurements suggest that a deep canyon existed more than 70 million years ago," he says.

Farley and Rebecca Flowers—a former postdoctoral scholar at Caltech who is now an assistant professor at the University of Colorado, Boulder—outlined their findings in a paper published in the November 29 issue of Science Express.

Building upon previous research (link to 2008 release: http://www.caltech.edu/content/grand-canyon-old-dinosaurs) by Farley's lab that showed that parts of the eastern canyon are likely to be at least 55 million years old, the team used a new method to test ancient rocks found at the bottom of the canyon's western section. Past experiments used the amount of helium produced by radioactive decay in apatite—a mineral found in the canyon's walls—to date the samples. This time around, Farley and Flowers took a closer look at the apatite grains by analyzing not only the amount but also the spatial distribution of helium atoms that were trapped within the crystals of the mineral as they moved closer to the surface of the earth during the massive erosion that caused the Grand Canyon to form.

Rocks buried in the earth are hot—with temperatures increasing by about 25 degrees Celsius for every kilometer of depth—but as a river canyon erodes the surface downwards towards a buried rock, that rock cools. The thermal history—shown by the helium distribution in the apatite grains—gives important clues about how much time has passed since there was significant erosion in the canyon.

"If you can document cooling through temperatures only a few degrees warmer than the earth's surface, you can learn about canyon formation," says Farley, who is also chair of the Division of Geological and Planetary Sciences at Caltech.

The analysis of the spatial distribution of helium allowed for detection of variations in the thermal structure at shallow levels of Earth's crust, says Flowers. That gave the team dates that enabled them to fine-tune the timeframe when the Grand Canyon was incised, or cut.

"Our research implies that the Grand Canyon was directly carved to within a few hundred meters of its modern depth by about 70 million years ago," she says.

Now that they have narrowed down the "when" of the Grand Canyon's formation, the geologists plan to continue investigations into how it took shape. The genesis of the canyon has important implications for understanding the evolution of many geological features in the western United States, including their tectonics and topography, according to the team.

"Our major scientific objective is to understand the history of the Colorado Plateau—why does this large and unusual geographic feature exist, and when was it formed," says Farley. "A canyon cannot form without high elevation—you don't cut canyons in rocks below sea level. Also, the details of the canyon's incision seem to suggest large-scale changes in surface topography, possibly including large-scale tilting of the plateau."

"Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon" appears in the November 29 issue of the journal Science Express. Funding for the research was provided by the National Science Foundation.

Written by Katie Neith
Contact:
Caltech Media Relations
mr@caltech.edu

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Earth Sciences:

nachricht Extending climate predictability beyond El Niño
21.04.2015 | University of Hawaii ‑ SOEST

nachricht Comparing Climate Models to Real World Shows Differences in Precipitation Intensity
17.04.2015 | Department of Energy, Office of Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Better battery imaging paves way for renewable energy future

21.04.2015 | Materials Sciences

Extending climate predictability beyond El Niño

21.04.2015 | Earth Sciences

Risk Perception: Social Exchange Can Amplify Subjective Fears

21.04.2015 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>