Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU project launch: PAGE21 closes gap in our understanding of the climate system

07.11.2011
Today researchers from eleven countries will meet in Potsdam to launch a new, four-year EU project. What happens when the vast amounts of carbon in Arctic soils are released to the atmosphere?

This is the central question field-researchers, operators of long term observatories and modellers from 18 partner institutions in the EU intend to answer with the PAGE21 project. By pooling expertise from various subjects, the scientists aim to deliver a valuable foundation for the United Nations 5th World Climate Report.

"I'm looking forward to close co-operation between the leading scientists in European permafrost research in the Arctic" said Prof. Dr. Hans-Wolfgang Hubberten of the Research Unit Potsdam of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association. The mineralogist leads the PAGE 21 project, which has been allotted almost 10 million Euros, of which just under 7 million Euros are provided by the 7th Framework Programme of the European Union. The acronym stands for “Changing permafrost in the Arctic and its Global Effects in the 21st Century".

“We need to improve our basic understanding of the physical and biogeochemical processes in permafrost so as to be able to provide more reliable predictions of future global climate change," elaborated Hubberten. About 50 percent of the underground organic carbon occurring worldwide is found in northern permafrost regions. This is more than double the amount of carbon currently in the atmosphere in the form of the greenhouse gases carbon dioxide and methane. Added to this, the effects of climate change are most severe and rapid in the Arctic. Permafrost is already thawing and releasing greenhouse gases in most parts of the Arctic, which exacerbates these effects.

Many of the mechanisms for release are in themselves fundamentally understood. However, when it comes to the quantification of single processes, the available data is sparse. This means that field scientists are called upon, for example, to deploy flux chambers on the permafrost in Siberia, to measure escaping gases when the ground thaws in the summer. In order to capture the changes in gas release over time and space, these measurements must be done repeatedly and cover larger areas as well as longer periods during the year. By standardizing measurement methods between partners, the scientists can directly compare their data. In doing this, the project partners of PAGE21 are expecting to obtain high-quality data records.

These records from the permafrost are a prerequisite basis for the improvement of global climate models. "Today's global models are frequently inaccurate because the permafrost regions, with all their feedback mechanisms, are under-represented." says Hubberten. An urgent goal of PAGE21 is to undertake steps to improve the models, which provide the basis for future mitigation and adaptation strategies confronting society in the 21st century.

Background Information:
Project Title: Changing permafrost in the Arctic and Its Global Effects in the 21st Century
Tool: Large-scale integrating project, FP7
Total cost: € 9,269,927
EC share: € 6,951,895
Duration: 48 months
Start: 1 November 2011
Project Coordinator: Prof. Dr. Hans-Wolfgang Hubberten, Alfred Wegener Institute for Polar and Marine Research

Partners: Alfred Wegener Institute for Polar and Marine Research (Germany), The University Centre in Svalbard (Norway), Stockholms Universitet (Sweden), Vrije Universiteit Amsterdam (Netherlands), Technical University of Vienna (Austria), Université Joseph Fourier, Grenoble (France), University of Exeter (UK), Max-Planck-Gesellschaft (Germany), Lund University (Sweden), University of Copenhagen (Denmark), University of Hamburg (Germany), Commissariat à l'Energie Atomique et aux Energies alternatives (France), Met Office, for and on behalf of the Secretary of State for the Defence of the United Kingdom, Great Britain and Northern Ireland (UK), Finnish Meteorological Institute (Finland), University of Eastern Finland (Finland), Institute for Biological Problems of Cryolithozone (Russia), Arctic Portal (Iceland), Moscow State University (Russia).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and middle latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>