Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA tests laser to measure atmospheric carbon dioxide

04.12.2008
A recent ESA campaign has demonstrated how a technique using lasers could be employed to measure carbon dioxide in the atmosphere. The campaign supports one of the main objectives of the candidate Earth Explorer A-SCOPE mission.

A-SCOPE (Advanced Space Carbon and climate Observation of Planet Earth) is one of the six candidate Earth Explorer missions that has just completed assessment study. The mission concept, along with the other five, will be presented to the science community at a User Consultation Meeting in January 2009.

Up to three missions will subsequently be selected for the next step of the implementation cycle (feasibility study), leading to the selection of ESA’s seventh Earth Explorer mission – envisaged to launch in the 2016 timeframe.

Atmospheric carbon dioxide is the most prominent greenhouse gas in the Earth's atmosphere. With concentrations having increased by more than 30% since pre-industrial times, carbon dioxide is the main reason for the rise in mean global temperature over the same period. While there is little doubt that the increase in atmospheric carbon dioxide is due to the burning of fossil fuels and land-use change, it is currently thought that less than half of the total emissions due to human activity has remained in the atmosphere – the rest being soaked up by the ocean and the land.

Clearly, understanding more about the movement of carbon between the atmosphere, land and ocean and whether these 'compartments' act as sources or sinks of carbon will help improve estimates of how the global carbon cycle, and ultimately the Earth, will change in the coming decades and centuries.

Taking measurements of atmospheric carbon dioxide from space is a challenge. The accuracy required to unambiguously characterise the sources and sinks of carbon dioxide is so high that limited measuring techniques would be of use. In this context, a laser-based system would be a very promising approach.

The A-SCOPE mission would employ an innovative method of measuring total atmospheric column carbon dioxide from space to improve our understanding of the carbon cycle. The proposed measuring technique involves two short laser pulses being emitted at two adjacent wavelengths. This results in carbon dioxide being absorbed at one of the wavelengths but not by the other, which serves as a reference. The comparison of the reflected signals from both wavelengths yields the total column concentration of carbon dioxide. This novel approach implies that the return signal depends on the reflectance properties of the area of ground illuminated by the laser. However, current knowledge about how much ground reflectance varies is insufficient to accurately assess margins of error.

Therefore, as part of the mission development an airborne campaign, called Reflex, was carried out this year by the Institute for Atmospheric Physics at the German Aerospace Centre (DLR) to measure laser reflectivity. Within the space of just a few months a complete instrument system was developed to mimic how the laser would work in space and installed on a DLR research Cessna Grand Caravan aircraft.

Two major exercises were carried out; one over northern Europe and another over southern Europe. In total more than 5000 km were flown and about 500 000 readings were acquired. Laser reflectivity measurements were taken over a wide range of terrains, including forest, agricultural land, olive groves, mountains, dry land, lakes as well over the open sea.

Unexpectedly, the flights over the Baltic and Mediterranean Seas retrieved particularly strong signals. This is very encouraging since it demonstrates that the required precision of the measurements could even be met above the ocean, which was thought to be the most problematic area.

The campaign successfully demonstrated that changes in ground reflectance would not significantly perturb the signal received by a laser system. This indicates that the measuring technique proposed by A-SCOPE could accurately retrieve atmospheric carbon dioxide information.

Beyond the needs for the A-SCOPE mission, the outcome of the Reflex campaign are expected to be of benefit to other scientists and engineers working with lasers as they provide the first dataset of laser ground-reflectivity for a wide range of surfaces.

Robert Meisner | alfa
Further information:
http://www.esa.int/esaEO/SEMHW24Z2OF_planet_0.html

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>