Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Erosion rates double along portion of Alaska's coast

Skyrocketing coastal erosion occurred in Alaska between 2002 and 2007 along a 64 kilometer (40 mile) stretch of the Beaufort Sea, a new study finds.

The surge of erosion in recent years, averaging more than double historical rates, is threatening coastal towns and destroying Alaskan cultural relics.

Average annual erosion rates along this segment of the Beaufort Sea, which lies North of Alaska, had already climbed from about 6.1 m (20 ft) per year between the mid-1950s and late-1970s, to 8.5 m (28 ft.) per year between the late-1970s and early 2000s, the study's authors note. The most recent erosion rates reached an average of 14 meters (45 feet) per year during the 2002-2007 period, reported Benjamin Jones, a geologist with the U.S Geological Survey in Anchorage, and his colleagues on February 14 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Changing arctic conditions may have caused these recent shifts in the rate and pattern of land loss along this coastline segment, the authors propose. The changes include declining sea ice extent, increasing summertime sea-surface temperature, rising sea level, and increases in storm power and corresponding wave action. "These factors may be leading to a new era in ocean-land interactions that seem to be repositioning and reshaping the Arctic coastline," Jones and his colleagues write. The authors also documented sections of Beaufort Sea coastline that eroded more than 24 m (80 ft.) during 2007.

The researchers caution that the recent patterns documented in their study may not be representative of the overall Arctic. However, they may well forecast the future pattern of coastline erosion in the region.

"This segment of coastline has historically eroded at some of the highest rates in the circum- Arctic, so the changes occurring on this open-ocean coast might not be occurring in other Arctic coastal settings," says Jones. But Arctic climate change is leading to rapid and complex environmental responses in both terrestrial and marine ecosystems in ways that will almost certainly affect the rate and pattern of coastline erosion in the Arctic, the authors write.

Interestingly, there were no westerly storm events during the summer of 2007, traditionally believed to be the drivers of coastal erosion in this region the Arctic. However, 2007 did boast the minimum arctic sea-ice extent and the warmest ocean temperatures on record.

"The recent trends toward warming sea-surface temperatures and rising sea-level may act to weaken the permafrost-dominated coastline by helping more quickly thaw ice-rich coastal bluffs and may potentially explain the disproportionate increase in erosion along ice-rich coastal bluffs relative to ice-poor coastal bluffs that we documented in our study," Jones says. "Any increases in already rapid rates of coastal retreat will have further ramifications on Arctic landscapes - including losses in freshwater and terrestrial wildlife habitats, in subsistence grounds for local communities, and in disappearing cultural sites, as well as adversely impacting coastal villages and towns. In addition, oil test wells are threatened."

Jones and his coauthors verified in another recent study the disappearance of cultural and historical sites along the same stretch of the Beaufort Sea. Those sites include Esook, a turn-of- the-century trading post now buried in the sea and Kolovik (Qalluvik), an abandoned Inupiaq village site that may soon be lost. At another site, near Lonely, Alaska, Jones snapped a picture of a wooden whaling boat that had rested on a bluff overhanging the ocean for nearly a century. A few months later the boat had washed away to sea. The study was published in the journal Arctic.

"Increase in the rate and uniformity of coastline erosion in Arctic Alaska"
Benjamin M. Jones: Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA.
Christopher D. Arp: Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA.
Mark T. Jorgenson: ABR. Inc., Fairbanks, Alaska, USA.
Kenneth M. Hinkel: Department of Geography, University of Cincinatti, Cincinatti, Ohio, USA.
Joel A. Schmutz: Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA.
Paul L. Flint: Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA.

Jones, B. M., C. D. Arp, M. T. Jorgenson, K. M., Hinkel, J. A. Schmutz, and P. L. Flint (2009), Increase in the rate and uniformity of coastline erosion in Arctic Alaska, Geophys. Res. Lett., 36, L03503, doi:10.1029/2008GL036205.
Contact information for author:
Benjamin M. Jones: +1 (907) 786-7033,

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

nachricht New interactive map shows climate change everywhere in world
22.03.2018 | University of Cincinnati

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>