Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering team completes ambitious Antarctic expedition in the 'deep-field'

A team of four British engineers has returned to the UK after completing a gruelling journey to one of the most remote and hostile locations on the planet to put in place equipment and supplies for an ambitious project later this year.

Enduring temperatures of minus 35°C the Subglacial Lake Ellsworth 'Advance Party' has successfully paved the way to explore an ancient lake buried beneath 3 km of Antarctic ice. A powerful 'tractor-train' towed nearly 70 tonnes of equipment across Antarctica's ice over deep snow and steep mountain passes. In December a science and engineering team will make the 16,000 km journey from the UK to collect water and sediments from the buried lake.

Lake Ellsworth will be the first Antarctic subglacial lake to be measured and sampled directly through the design and manufacture of space-industry standard 'clean technology'. Scientists have been planning for more than 15 years to access the lake, which is one of more than 400 known subglacial lakes in Antarctica, in the quest to yield new knowledge about the evolution of life on Earth and other planets. Lake-bed sediments could also provide vital clues about the Earth's past climate. Through a bore hole, drilled using high-pressure hot water, the team will lower a titanium probe to measure and sample the water, followed by a corer to extract sediment from the lake.

The Advance Party team paved the way for this mission by transporting the drilling equipment more than 250 km through the Ellsworth Mountain range, over deep-snow terrain and crevasses to the Lake Ellsworth drilling site. The final leg of this journey was the most challenging and required powerful tractors to tow heavy containers of equipment on sledges and skis, forming a 'tractor-train'. The soft, deep snow and concrete-hard 'sastrugi' snow forms caused the Advance Party's progress to slow, but after three days they safely reached the Lake Ellsworth drilling site.

Andy Tait, Advance Party Member and Hot Water Drill Designer / Engineer says, "Lake Ellsworth is extremely remote, cold and hostile – ambient temperatures dropped to -35°C and with wind chill they dropped further still making living and working on site a physical challenge. We deliberately located the equipment over a kilometer (1.7km) from the drill site to protect it during the harsh Antarctic winter. We will move it to its final position and set up the rig ready for drilling in December.

"Severe winds and the extreme environmental conditions of the area made it vital that we spent a number of days winterising the equipment. Windblown snow will partially bury the equipment and this area of Antarctica is so vast that it would be difficult to find it again without the GPS locators we fitted at the corners of the site. Going back to live there for three months in November will certainly be an experience!"

Chris Hill, Advance Party Member and Lake Ellsworth Programme Manager says, "This is a major milestone for the programme and we are delighted that our complex logistical operations were a success this season. Working within the short Antarctic summer season adds pressure to our time on the continent, which is why we had to plan two stages of the programme. The drilling season is nearly upon us, and we still have a long way to go before we can access Lake Ellsworth, but the success of the Advance Party this season certainly puts us in a good position for November."

The Lake Ellsworth Programme Principal Investigator, Professor Martin Siegert from the University of Edinburgh says, "The completion of this stage of the mission is a welcome one – we are now one step closer to finding out if new and unique forms of microbial life could have evolved in this environment. The samples we hope to capture from Lake Ellsworth will be hugely valuable to the scientific community. This year we will complete and test both the water sampling probe and the sediment corer. Extracted sediment samples could give us an important insight in to the ancient history of the West Antarctic Ice Sheet, including past collapse, which would have implications for future sea level rise."

The Lake Ellsworth consortium has published a paper describing how the sampling of Lake Ellsworth can be undertaken with minimal environmental impact - Reviews of Geophysics: Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments

Issued by British Antarctic Survey Press Office on behalf of the Subglacial Lake Ellsworth consortium:
Heather Martin, Tel: +44 (0)1223 221226; Mobile: 07740 822229; Email:

Athena Dinar, Tel: +44 (0)1223 221414; Mobile: 07736 921693; Email:

Follow the Subglacial Lake Ellsworth programme:
Twitter @Lake_Ellsworth
For broadcast quality images of Union Glacier, the Ellsworth Mountains and the Lake Ellsworth drilling site see:
Advance Party, British Antarctic Survey
Based UK: Andy Tait, Lead Engineer (hot-water drill) – winterised equipment at Lake Ellsworth drilling site
Based UK: Andy Webb, Drilling Engineer – accompanied tractor-train Union Glacier to Lake Ellsworth
Based Antarctica: Chris Hill, Programme Manager – winterised equipment at Lake Ellsworth drilling site

Based Antarctica: Scott Iremonger, Plant Engineer – accompanied tractor-train Union Glacier to Lake Ellsworth

University of Edinburgh (Principal Investigator)
Prof Martin Siegert, Tel: +44 (0)131 650 7542; Mobile: 07780 703008; Email:

Press Office: Catriona Kelly, Tel: +44 (0)131 651 4401; Mobile: 07791 355940; Email:

Notes for editors:

The Lake Ellsworth consortium programme is funded by the Natural Environment Research Council.

More than 400 subglacial lakes have so far been discovered beneath Antarctica's vast ice sheet. The most well-known of these is Lake Vostok in East Antarctica. A Russian team hopes to penetrate and collect samples from this lake soon

The space-industry standard 'clean technology' required to penetrate and sample subglacial Lake Ellsworth is the first of its kind to be developed

The hot-water drill to create the borehole has been designed and built by engineers at British Antarctic Survey. Only two companies in the world could deliver a 3.4km-long continuous hose to the required specification – both based in the UK

Analysis of the sediments from the sediment corer will reveal clues to microbial life and help scientists assess the present-day stability of the West Antarctic Ice Sheet and the likely consequences for future sea-level rise. Water and sediments samples will be analysed by consortium members in research institute and university laboratories throughout the UK

The site is located at S78 58.607 and W090 30.577 - which is 1.7km from the actual Lake Ellsworth drilling site so that it remains unaffected by the equipment's presence over the winter

The unique five metre long water sampling probe was designed and built by engineers at the National Oceanography Centre in Southampton. Made of the highest grade of titanium to ensure maximum sterility and strength, it will collect 24 water samples at different lake depths, including the top layer of sediments at the lake-floor / water interface.

Scientists at British Antarctic Survey and Durham University, working in partnership with Austrian business UWITEC, have designed and built a sediment corer, which can extract a core up to three metres long. The unique percussion-driven piston corer is strong enough to penetrate even the most compacted glacial sediments.

Athena Dinar | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>