Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even if emissions stop, carbon dioxide could warm Earth for centuries

25.11.2013
Even if carbon dioxide emissions came to a sudden halt, the carbon dioxide already in Earth's atmosphere could continue to warm our planet for hundreds of years, according to Princeton University-led research published in the journal Nature Climate Change. The study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.

The researchers simulated an Earth on which, after 1,800 billion tons of carbon entered the atmosphere, all carbon dioxide emissions suddenly stopped. Scientists commonly use the scenario of emissions screeching to a stop to gauge the heat-trapping staying power of carbon dioxide.


Princeton University-led research suggests that even if carbon dioxide emissions came to a sudden halt, the carbon dioxide already in Earth's atmosphere could continue to warm our planet for hundreds of years. The researchers found while carbon dioxide steadily dissipates, the absorption of heat the oceans decreases, especially in the polar oceans such as off of Antarctica (above). This effect has not been accounted for in existing research.

Credit: Photo courtesy of Eric Galbraith, McGill University

Within a millennium of this simulated shutoff, the carbon itself faded steadily with 40 percent absorbed by Earth's oceans and landmasses within 20 years and 80 percent soaked up at the end of the 1,000 years.

By itself, such a decrease of atmospheric carbon dioxide should lead to cooling. But the heat trapped by the carbon dioxide took a divergent track.

After a century of cooling, the planet warmed by 0.37 degrees Celsius (0.66 Fahrenheit) during the next 400 years as the ocean absorbed less and less heat. While the resulting temperature spike seems slight, a little heat goes a long way here. Earth has warmed by only 0.85 degrees Celsius (1.5 degrees Fahrenheit) since pre-industrial times.

The Intergovernmental Panel on Climate Change estimates that global temperatures a mere 2 degrees Celsius (3.6 degrees Fahrenheit) higher than pre-industrial levels would dangerously interfere with the climate system. To avoid that point would mean humans have to keep cumulative carbon dioxide emissions below 1,000 billion tons of carbon, about half of which has already been put into the atmosphere since the dawn of industry.

The lingering warming effect the researchers found, however, suggests that the 2-degree point may be reached with much less carbon, said first author Thomas Frölicher, who conducted the work as a postdoctoral researcher in Princeton's Program in Atmospheric and Oceanic Sciences under co-author Jorge Sarmiento, the George J. Magee Professor of Geoscience and Geological Engineering.

"If our results are correct, the total carbon emissions required to stay below 2 degrees of warming would have to be three-quarters of previous estimates, only 750 billion tons instead of 1,000 billion tons of carbon," said Frölicher, now a researcher at the Swiss Federal Institute of Technology in Zurich. "Thus, limiting the warming to 2 degrees would require keeping future cumulative carbon emissions below 250 billion tons, only half of the already emitted amount of 500 billion tons."

The researchers' work contradicts a scientific consensus that the global temperature would remain constant or decline if emissions were suddenly cut to zero. But previous research did not account for a gradual reduction in the oceans' ability to absorb heat from the atmosphere, particularly the polar oceans, Frölicher said. Although carbon dioxide steadily dissipates, Frölicher and his co-authors were able to see that the oceans that remove heat from the atmosphere gradually take up less. Eventually, the residual heat offsets the cooling that occurred due to dwindling amounts of carbon dioxide.

Frölicher and his co-authors showed that the change in ocean heat uptake in the polar regions has a larger effect on global mean temperature than a change in low-latitude oceans, a mechanism known as "ocean-heat uptake efficacy." This mechanism was first explored in a 2010 paper by Frölicher's co-author, Michael Winton, a researcher at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (GFDL) on Princeton's Forrestal Campus.

"The regional uptake of heat plays a central role. Previous models have not really represented that very well," Frölicher said.

"Scientists have thought that the temperature stays constant or declines once emissions stop, but now we show that the possibility of a temperature increase can not be excluded," Frölicher said. "This is illustrative of how difficult it may be to reverse climate change — we stop the emissions, but still get an increase in the global mean temperature."

The paper, "Continued global warming after CO2 emissions stoppage," was published Nov. 24 by Nature Climate Change. Funding for the work was provided by the Swiss National Science Foundation (Ambizione grant PZ00P2_142573) and Princeton University Carbon Mitigation Initiative.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>