Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elucidating Environmental History with 100 Million Laser Beams

29.04.2013
Laser scanning and subsurface geodata fused for 3D reconstruction of karst depressions on Crete

By combining high-resolution surface data obtained from laser scanning with subsurface geodata, scientists from Heidelberg University have succeeded for the first time in providing a full picture of so-called karst depressions on the island of Crete, including a three-dimensional view into the subsurface structure of these funnel-shaped hollows.


Digital 3D model of two dolines on Crete explored via high-precision laser scanning and subsurface measurement procedures. Vegetation such as olive trees and the surface of the soil were virtually removed for the models to provide insights into subsurface structure. Figure: Department of Geoinformatics

This new 3D representation method has been developed under the leadership of junior professor Dr. Bernhard Höfle at Heidelberg University’s Institute of Geography. It is ideal for in-depth analyses at the interface between geosciences and ancient studies. The sediment infills of karst depressions provide terrestrial archives of great value for the reconstruction of environmental scenarios from the past.

For thousands of years, karst landforms and particularly karst depressions like dolines, for example, have been important sites of human husbandry. There is evidence from as far back as the 2nd century BC that such depressions were used for agriculture and livestock breeding, including in the mountainous regions of Crete. Due to their funnel-shaped form, dolines serve as “material traps” in which loose sediments, archaeological finds or volcanic ashes can accumulate. “These infills can supply important information on former climatic conditions, vegetation structure and also on human impact through land use”, says Dr. Christoph Siart, a fellow researcher of Prof. Höfle’s.

So far, say the Heidelberg geographers, karst depressions have usually only been examined in connection with drilling of sediment cores. These provide insights into the subsurface structure, albeit of a discrete nature, and have been drawn upon in conjunction with geomorphological surface finds to propose explanations for the genesis and function of dolines. With the aid of the new 3D data-modelling method developed in Heidelberg, the scientists have now succeeded in combining the two-dimensional subsurface data with high-resolution 3D surface data. To accomplish this, surface topography data were acquired with the aid of terrestrial laser scanning. Two-dimensional views of various cross-sections of the subsurface of the sediment-filled dolines were achieved with a combination of various geophysical measuring procedures.

The fusion of these data now makes it feasible to undertake soundly substantiated geomorphometric analyses. “For example, we can determine the volume or undertake a digital measurement of the depressions in a virtual three-dimensional model”, says Prof. Höfle. “That means we have created the basis for first-ever statements on the genesis, the sediment infill process and the age of the dolines. This is of immense significance for the reconstruction of the environmental history because it supplies a holistic view of geomorphological forms via a combination of surface and subsurface data and thus helps to understand the local processes that ultimately led to the formation of the landscape as we know it today.”

Data collection and methodological development took place in the framework of the projects “Reconstruction of Holocene Environmental Change on Crete” and “Geoinformatics and 3D Geoinformation Technology” conducted in the physical geography and geoinformatics research groups of Heidelberg University’s Institute of Geography. For more information, go to http://giscience.uni-hd.de.

Original publication
C. Siart, M. Forbriger, E. Nowaczinski, S. Hecht & B. Höfle: Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification; Earth Surface Processes and Landforms (2013), doi: 10.1002/esp.3394

Contact
Junior professor Dr. Bernhard Höfle
Institute of Geography and
Heidelberg Center for the Environment (HCE)
Phone: +49 6221 54-5594
hoefle@uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://www.youtube.com/watch?v=_9jgPC6zGI8

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>