Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño's 'remote control' on hurricanes in the Northeastern Pacific

05.12.2014

El Niño, the abnormal warming of sea surface temperatures in the Pacific Ocean, is a well-studied tropical climate phenomenon that occurs every few years. It has major impacts on society and Earth's climate - inducing intense droughts and floods in multiple regions of the globe.

Further, scientists have observed that El Niño greatly influences the yearly variations of tropical cyclones (a general term which includes hurricanes, typhoons and cyclones) in the Pacific and Atlantic Oceans. However, there is a mismatch in both timing and location between this climate disturbance and the Northern Hemisphere hurricane season:


The discharge of heat, occurring in the boreal summer, followed the peak of El Niño (August-September 1998). Historical tracks of Category 3 to 5 hurricanes that developed after the peak of strong El Niños in 1991/92, 1997/98, 2008/09 and 2014 are shown in black.

Credit: Jin, et al. (2014)

El Niño peaks in winter and its surface ocean warming occurs mostly along the equator, i.e. a season and region without tropical cyclone (TC) activity. This prompted scientists to investigate El Niño's influence on hurricanes via its remote ability to alter atmospheric conditions such as stability and vertical wind shear rather than the local oceanic environment.

Fei-Fei Jin and Julien Boucharel at the University of Hawai'i School of Ocean and Earth Science and Technology (SOEST) and I-I Lin at the National Taiwan University published a paper today in Nature that uncovers what's behind this "remote control."

Jin and colleagues uncovered an oceanic pathway that brings El Niño's heat into the Northeastern Pacific basin two or three seasons after its winter peak - right in time to directly fuel intense hurricanes in that region.

El Niño develops as the equatorial Pacific Ocean builds up a huge amount of heat underneath the surface and it turns into La Niña when this heat is discharged out of the equatorial region.

"This recharge/discharge of heat makes El Niño/La Niña evolve somewhat like a swing," said lead author of the study Jin.

Prior to Jin and colleagues' recent work, researchers had largely ignored the huge accumulation of heat occurring underneath the ocean surface during every El Niño event as a potential culprit for fueling hurricane activity.

"We did not connect the discharged heat of El Niño to the fueling of hurricanes until recently, when we noticed another line of active research in the tropical cyclone community that clearly demonstrated that a strong hurricane is able to get its energy not only from the warm surface water, but also by causing warm, deep water - up to 100 meters deep - to upwell to the surface," Jin continued.

Co-author Lin had been studying how heat beneath the ocean surface adds energy to intensify typhoons (tropical cyclones that occur in the western Pacific).

"The super Typhoon Hainan last year, for instance, reached strength way beyond normal category 5," said Lin. "This led to a proposed consideration to extend the scale to category 6, to be able to grasp more properly its intensity. The heat stored underneath the ocean surface can provide additional energy to fuel such extraordinarily intense tropical cyclones."

"The North-Eastern Pacific is a region normally without abundant subsurface heat," said Boucharel, a post-doctoral researcher at UH SOEST. "El Niño's heat discharged into this region provides conditions to generate abnormal amount of intense hurricanes that may threaten Mexico, the southwest of the US and the Hawaiian islands."

Furthermore, caution the authors, most climate models predict a slow down of the tropical atmospheric circulation as the mean global climate warms up. This will result in extra heat stored underneath the North-eastern Pacific and thus greatly increase the probability for this region to experience more frequent intense hurricanes.

Viewed more optimistically, the authors point out that their findings may provide a skillful method to anticipate the activeness of the coming hurricane season by monitoring the El Niño conditions two to three seasons ahead of potentially powerful hurricane that may result.

The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai'i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Marcie Grabowski | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>