Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño played a key role in Pacific marine heatwave, as did potentially climate change

13.07.2016

The Northeast Pacific's largest marine heatwave on record was at least in part caused by El Niño climate patterns. And unusually warm water events in that ocean could potentially become more frequent with rising levels of greenhouse gases.

That's the findings of a new study by researchers from Georgia Institute of Technology and the National Oceanic and Atmospheric Administration. They linked the 2014-2015 marine heatwave - often referred to as the "warm blob" - to weather patterns that started in late 2013. The heatwave caused marine animals to stray far outside of their normal habitats, disrupting ecosystems and leading to massive die-offs of seabirds, whales and sea lions.


This is a map showing the development of the marine heatwave.

Credit: Georgia Institute of Technology

The study, which was published July 11 in journal Nature Climate Change, was sponsored by the National Science Foundation.

"We had two and a half years of consistent warming, which translated to a record harmful algal bloom in 2015 and prolonged stress on the ecosystem," said Emanuele Di Lorenzo, a professor in Georgia Tech's School of Earth and Atmospheric Sciences. "What we do in the study is ask whether this type of activity is going to become more frequent with greenhouse gases rising."

The researchers traced the origin of the marine heat wave to a few months during late 2013 and early 2014, when a ridge of high pressure led to much weaker winds that normally bring cold Artic air over the North Pacific. That allowed ocean temperatures to rise a few degrees above average.

Then, in mid-2014 the tropical weather pattern El Niño intensified the warming throughout the Pacific. The warm temperatures lingered through the end of the year, and by 2015 the region of warm water had expanded to the West Coast, where algal blooms closed fisheries for clams and Dungeness crab.

"The bottom line is that El Niño had a hand in this even though we're talking about very long-distance influences," said Nate Mantua, a research scientist at NOAA Fisheries' Southwest Fisheries Science Center and a coauthor of the study.

The researchers used climate model simulations to show the connection between increasing greenhouse gas concentrations and the impact on the ocean water temperatures. The study found that these extreme weather events could become more frequent and pronounced as the climate warms.

"This multi-year event caused extensive impacts on marine life," Di Lorenzo said. "For example, some salmon populations have life cycles of three years, so the marine heatwave has brought a poor feeding, growth and survival environment in the ocean for multiple generations. Events like this contribute to reducing species diversity."

And the effects of the "warm blob" could linger.

"Some of these effects are still ongoing and not fully understood because of the prolonged character of the ocean heatwave," Di Lorenzo said. "Whether these multi-year climate extremes will become more frequent under greenhouse forcing is a key question for scientists, resource managers and society."

###

This material is based upon work supported by the National Science Foundation under Grant Nos. OCE 1356924 and OCE 1419292. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

CITATION: Emanuele Di Lorenzo and Nathan Mantua, "Multi-year persistence of the 2014/15 North Pacific marine heatwave," (Nature Climate Change, July 2016).

Josh Brown | EurekAlert!

Further reports about: Climate El Niño Fisheries Nature Climate Change Pacific greenhouse

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>