Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño played a key role in Pacific marine heatwave, as did potentially climate change

13.07.2016

The Northeast Pacific's largest marine heatwave on record was at least in part caused by El Niño climate patterns. And unusually warm water events in that ocean could potentially become more frequent with rising levels of greenhouse gases.

That's the findings of a new study by researchers from Georgia Institute of Technology and the National Oceanic and Atmospheric Administration. They linked the 2014-2015 marine heatwave - often referred to as the "warm blob" - to weather patterns that started in late 2013. The heatwave caused marine animals to stray far outside of their normal habitats, disrupting ecosystems and leading to massive die-offs of seabirds, whales and sea lions.


This is a map showing the development of the marine heatwave.

Credit: Georgia Institute of Technology

The study, which was published July 11 in journal Nature Climate Change, was sponsored by the National Science Foundation.

"We had two and a half years of consistent warming, which translated to a record harmful algal bloom in 2015 and prolonged stress on the ecosystem," said Emanuele Di Lorenzo, a professor in Georgia Tech's School of Earth and Atmospheric Sciences. "What we do in the study is ask whether this type of activity is going to become more frequent with greenhouse gases rising."

The researchers traced the origin of the marine heat wave to a few months during late 2013 and early 2014, when a ridge of high pressure led to much weaker winds that normally bring cold Artic air over the North Pacific. That allowed ocean temperatures to rise a few degrees above average.

Then, in mid-2014 the tropical weather pattern El Niño intensified the warming throughout the Pacific. The warm temperatures lingered through the end of the year, and by 2015 the region of warm water had expanded to the West Coast, where algal blooms closed fisheries for clams and Dungeness crab.

"The bottom line is that El Niño had a hand in this even though we're talking about very long-distance influences," said Nate Mantua, a research scientist at NOAA Fisheries' Southwest Fisheries Science Center and a coauthor of the study.

The researchers used climate model simulations to show the connection between increasing greenhouse gas concentrations and the impact on the ocean water temperatures. The study found that these extreme weather events could become more frequent and pronounced as the climate warms.

"This multi-year event caused extensive impacts on marine life," Di Lorenzo said. "For example, some salmon populations have life cycles of three years, so the marine heatwave has brought a poor feeding, growth and survival environment in the ocean for multiple generations. Events like this contribute to reducing species diversity."

And the effects of the "warm blob" could linger.

"Some of these effects are still ongoing and not fully understood because of the prolonged character of the ocean heatwave," Di Lorenzo said. "Whether these multi-year climate extremes will become more frequent under greenhouse forcing is a key question for scientists, resource managers and society."

###

This material is based upon work supported by the National Science Foundation under Grant Nos. OCE 1356924 and OCE 1419292. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

CITATION: Emanuele Di Lorenzo and Nathan Mantua, "Multi-year persistence of the 2014/15 North Pacific marine heatwave," (Nature Climate Change, July 2016).

Josh Brown | EurekAlert!

Further reports about: Climate El Niño Fisheries Nature Climate Change Pacific greenhouse

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>