Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of climate change in the Arctic more extensive than expected

05.05.2011
A much reduced covering of snow, shorter winter season and thawing tundra. The effects of climate change in the Arctic are already here. And the changes are taking place significantly faster than previously thought. This is what emerges from a new research report on the Arctic, presented in Copenhagen this week. Margareta Johansson, from Lund University, is one of the researchers behind the report.
Together with Terry Callaghan, a researcher at the Royal Swedish Academy of Sciences, Margareta is the editor of the two chapters on snow and permafrost.

“The changes we see are dramatic. And they are not coincidental. The trends are unequivocal and deviate from the norm when compared with a longer term perspective”, she says.

The Arctic is one of the parts of the globe that is warming up fastest today. Measurements of air temperature show that the most recent five-year period has been the warmest since 1880, when monitoring began. Other data, from tree rings among other things, show that the summer temperatures over the last decades have been the highest in 2000 years. As a consequence, the snow cover in May and June has decreased by close to 20 per cent. The winter season has also become almost two weeks shorter – in just a few decades. In addition, the temperature in the permafrost has increased by between half a degree and two degrees.

“There is no indication that the permafrost will not continue to thaw”, says Margareta Johansson.

Large quantities of carbon are stored in the permafrost.

“Our data shows that there is significantly more than previously thought. There is approximately double the amount of carbon in the permafrost as there is in the atmosphere today”, says Margareta Johansson.

The carbon comes from organic material which was “deep frozen” in the ground during the last ice age. As long as the ground is frozen, the carbon remains stable. But as the permafrost thaws there is a risk that carbon dioxide and methane, a greenhouse gas more than 20 times more powerful than carbon dioxide, will be released, which could increase global warming.

“But it is also possible that the vegetation which will be able to grow when the ground thaws will absorb the carbon dioxide. We still know very little about this. With the knowledge we have today we cannot say for sure whether the thawing tundra will absorb or produce more greenhouse gases in the future”, says Margareta Johansson.

Effects of this type, so-called feedback effects, are of major significance for how extensive global warming will be in the future. Margareta Johansson and her colleagues present nine different feedback effects in their report. One of the most important right now is the reduction of the Arctic’s albedo. The decrease in the snow- and ice-covered surfaces means that less solar radiation is reflected back out into the atmosphere. It is absorbed instead, with temperatures rising as a result. Thus the Arctic has entered a stage where it is itself reinforcing climate change.

The future does not look brighter. Climate models show that temperatures will rise by a further 3 to 7 degrees. In Canada, the uppermost metres of permafrost will thaw on approximately one fifth of the surface currently covered by permafrost. The equivalent figure for Alaska is 57 per cent. The length of the winter season and the snow coverage in the Arctic will continue to decrease and the glaciers in the area will probably lose between 10 and 30 per cent of their total mass. All this within this century and with grave consequences for the ecosystems, existing infrastructure and human living conditions.

New estimates also show that by 2100, the sea level will have risen by between 0.9 and 1.6 metres, which is approximately twice the increase predicted by the UN’s panel on climate change, IPCC, in its 2007 report. This is largely due to the rapid melting of the Arctic icecap. Between 2003 and 2008, the melting of the Arctic icecap accounted for 40 per cent of the global rise in sea level.

“It is clear that great changes are at hand. It is all happening in the Arctic right now. And what is happening there affects us all”, says Margareta Johansson.

The report “Impacts of climate change on snow, water, ice and permafrost in the Arctic” has been compiled by close to 200 polar researchers. It is the most comprehensive synthesis of knowledge about the Arctic that has been presented in the last six years. The work was organised by the Arctic Council’s working group for environmental monitoring (the Arctic Monitoring and Assessment Programme) and will serve as the basis for the IPCC’s fifth report, which is expected to be ready by 2014.

Besides Margareta Johansson, Torben Christensen from Lund University also took part in the work.

For more information:
Margareta Johansson, Division of Physical Geography and Ecosystems Analysis, Lund University, telephone: 046-2224480, mobile: 070-6842965, email: Margareta.Johansson@nateko.lu.se
Terry Callaghan, Royal Swedish Academy of Sciences, email: terry_callaghan@btinternet.com
Read more information on the report and The Artic as a messenger for global processes - climate change and pollution conference in Copenhagen where it is being presented today.

- Ulrika Jönsson Belyazid

Margareta Johansson | EurekAlert!
Further information:
http://www.lu.se

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>