Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of climate change in the Arctic more extensive than expected

05.05.2011
A much reduced covering of snow, shorter winter season and thawing tundra. The effects of climate change in the Arctic are already here. And the changes are taking place significantly faster than previously thought. This is what emerges from a new research report on the Arctic, presented in Copenhagen this week. Margareta Johansson, from Lund University, is one of the researchers behind the report.
Together with Terry Callaghan, a researcher at the Royal Swedish Academy of Sciences, Margareta is the editor of the two chapters on snow and permafrost.

“The changes we see are dramatic. And they are not coincidental. The trends are unequivocal and deviate from the norm when compared with a longer term perspective”, she says.

The Arctic is one of the parts of the globe that is warming up fastest today. Measurements of air temperature show that the most recent five-year period has been the warmest since 1880, when monitoring began. Other data, from tree rings among other things, show that the summer temperatures over the last decades have been the highest in 2000 years. As a consequence, the snow cover in May and June has decreased by close to 20 per cent. The winter season has also become almost two weeks shorter – in just a few decades. In addition, the temperature in the permafrost has increased by between half a degree and two degrees.

“There is no indication that the permafrost will not continue to thaw”, says Margareta Johansson.

Large quantities of carbon are stored in the permafrost.

“Our data shows that there is significantly more than previously thought. There is approximately double the amount of carbon in the permafrost as there is in the atmosphere today”, says Margareta Johansson.

The carbon comes from organic material which was “deep frozen” in the ground during the last ice age. As long as the ground is frozen, the carbon remains stable. But as the permafrost thaws there is a risk that carbon dioxide and methane, a greenhouse gas more than 20 times more powerful than carbon dioxide, will be released, which could increase global warming.

“But it is also possible that the vegetation which will be able to grow when the ground thaws will absorb the carbon dioxide. We still know very little about this. With the knowledge we have today we cannot say for sure whether the thawing tundra will absorb or produce more greenhouse gases in the future”, says Margareta Johansson.

Effects of this type, so-called feedback effects, are of major significance for how extensive global warming will be in the future. Margareta Johansson and her colleagues present nine different feedback effects in their report. One of the most important right now is the reduction of the Arctic’s albedo. The decrease in the snow- and ice-covered surfaces means that less solar radiation is reflected back out into the atmosphere. It is absorbed instead, with temperatures rising as a result. Thus the Arctic has entered a stage where it is itself reinforcing climate change.

The future does not look brighter. Climate models show that temperatures will rise by a further 3 to 7 degrees. In Canada, the uppermost metres of permafrost will thaw on approximately one fifth of the surface currently covered by permafrost. The equivalent figure for Alaska is 57 per cent. The length of the winter season and the snow coverage in the Arctic will continue to decrease and the glaciers in the area will probably lose between 10 and 30 per cent of their total mass. All this within this century and with grave consequences for the ecosystems, existing infrastructure and human living conditions.

New estimates also show that by 2100, the sea level will have risen by between 0.9 and 1.6 metres, which is approximately twice the increase predicted by the UN’s panel on climate change, IPCC, in its 2007 report. This is largely due to the rapid melting of the Arctic icecap. Between 2003 and 2008, the melting of the Arctic icecap accounted for 40 per cent of the global rise in sea level.

“It is clear that great changes are at hand. It is all happening in the Arctic right now. And what is happening there affects us all”, says Margareta Johansson.

The report “Impacts of climate change on snow, water, ice and permafrost in the Arctic” has been compiled by close to 200 polar researchers. It is the most comprehensive synthesis of knowledge about the Arctic that has been presented in the last six years. The work was organised by the Arctic Council’s working group for environmental monitoring (the Arctic Monitoring and Assessment Programme) and will serve as the basis for the IPCC’s fifth report, which is expected to be ready by 2014.

Besides Margareta Johansson, Torben Christensen from Lund University also took part in the work.

For more information:
Margareta Johansson, Division of Physical Geography and Ecosystems Analysis, Lund University, telephone: 046-2224480, mobile: 070-6842965, email: Margareta.Johansson@nateko.lu.se
Terry Callaghan, Royal Swedish Academy of Sciences, email: terry_callaghan@btinternet.com
Read more information on the report and The Artic as a messenger for global processes - climate change and pollution conference in Copenhagen where it is being presented today.

- Ulrika Jönsson Belyazid

Margareta Johansson | EurekAlert!
Further information:
http://www.lu.se

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>