Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Effect of CO2 Injection on Geological Formations Studied

Coal and Energy Center at Virginia Tech selected for study on injection of CO2 into storage reservoirs

In a test project, researchers plan to inject some 20,000 tons of carbon dioxide (CO2) into a coalbed methane field in southwest Virginia, at a site that is not suitable for underground mining purposes.

A cadre of government and private companies, led by the Virginia Center for Coal and Energy Research located at Virginia Tech, will be involved in the injection and subsequent monitoring. Some $11,500,000 in funding for this four-year project is coming from the U.S. Department of Energy (DOE), and is part of a portfolio of projects aimed at achieving a better understanding of the effect of CO2 on geologic formations.

“The proposed research will test the ability to inject CO2 into coal seams that cannot be mined, as well as the potential to enhance the coalbed methane recovery,” said Michael Karmis, the director of the Virginia Center for Coal and Energy Research and the Stonie Barker Chaired Professor of Mining and Minerals Engineering at Virginia Tech.

The project is based on a number of previously successful studies that have identified promising methods for storing CO2 in stacked underground reservoirs, and the ability to sequester the CO2, identified as a contributor to global warming, in the coal seams.

Research is ongoing as to which coal seams are good disposal sites and the conditions under which the impounded CO2 would remain stable.

For example, previous studies have indicated geologic formations in Central Appalachia are promising for storage and carbon sequestration. Results from these studies are the basis for the proposed work by Karmis and his colleagues. “However, limited experience with injection into coal, tight sandstone, and organic-rich shales in Central Appalachia makes commercial potential uncertain at this time,” Karmis said.

The grant to Karmis and his team is part of a larger effort recently announced by the DOE. On July 6, the federal agency released its intent to expand its efforts in insuring long-term geologic carbon dioxide storage is safe and environmentally secure with more than $45 million being devoted to these efforts.

The other two new DOE projects will allow Blackhorse Energy LLC of Houston, Texas and the University of Kansas Center for Research to perform similar studies.

In Virginia, Karmis will document the efforts and record the work into a best practices manual for carbon dioxide capture and storage activities. The manual is intended to help reduce storage risk by documenting the uncertainties related to these activities. Also, project data will be incorporated in the National Carbon Sequestration Database and Geographical Information System, an interactive online tool that integrates a wealth of information on worldwide efforts to deploy carbon capture and storage technology.

Carbon capture and storage is the process of capturing greenhouse gases from large stationary sources, such as power plants, and storing them in ways that prevent their release to the atmosphere, and is a key element in national efforts to mitigate climate change.

The Office of Fossil Energy’s National Energy Technology Laboratory (NETL) will manage the work.

Working with Karmis and his center will be: Marshall Miller & Associates; the Virginia Department of Mines, Minerals, and Energy; Southern States Energy Board; Gerald R. Hill Ph.D., Inc.; Geological Survey of Alabama; Sandia Technologies; and Det Norske Veritas. This research team has experience in a number of geologic storage characterization studies and carbon sequestration injection pilot studies under the Regional Carbon Sequestration Partnerships established by the NETL/ DOE.

Lynn Nystrom | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>