Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eco-friendly defence against erosion in arctic regions

09.10.2009
A robust geosynthetic bag developed by the French and Norwegian partners of EUREKA project E! 3702 GISSAC can be filled with locally available, low-grade soil and used to build protective infrastructures capable of withstanding sea and ice erosion in the harsh Arctic climate.

Coastal roads and harbours are traditionally protected from sea erosion by giant blocks of rock or geosynthetic bags filled with material, all locally sourced where possible. In the Arctic and other cold northern regions, where good quality material is often scarce, the prohibitive economic and environmental cost of importing suitable matter has led to a demand for solutions that make use of whatever low quality soil or other material is available.

Geosynthetic bags, which are typically woven textile, polymer-based envelopes, have been successfully used for more than 40 years in temperate climates, but have not been tested in sub-zero conditions.

Answering local needs

EUREKA project E! 3702 GISSAC was initiated by TenCate Geosynthetics France, a world-leader in the design and production of geosynthetic materials for civil engineering projects. The company wanted to find out if geosynthetic bags worked in very cold conditions, and to come up with a product that was both environmentally friendly and sustainable.

"Our northern European sales offices asked us to develop suitable materials for cold regions where the temperature is rarely above zero," explains Dr Olivier Artières, TenCate's Innovation Project Manager and Senior Expert. "They face specific problems such as the thawing and freezing cycles of water that make the construction of infrastructures like roads and jetties difficult.

"Following a discussion with colleagues at Norway's SINTEF Research Institute we decided to talk to hold a brainstorming session with local users to gain a better understanding of their needs and the kind of solution they were looking for. They told us that constructing embankments under water to create dykes and breakwaters was a major problem, and protecting against coastal erosion. This was particularly so in areas such as Svalbard, where traditional solutions are too expensive or don't comply with strict environmental regulations, and which also lack suitable geological material for building protective infrastructures."

A robust and versatile solution

The GISSAC project team, with the support of EUREKA and the Norwegian-French Foundation, set about developing envelopes made with textiles comprising different structures (woven, non-woven and knitted) and different types of polymers. Laboratory tests and analysis of on-site results were conducted by French partner CETE Est LRPC Nancy and Norwegian subcontractor UNIS, with PhD and MsC students taking part in the fieldwork.

The project also entailed establishing the optimum shape and size of the geosynthetic bags, or Geobags, and the best method of installation. "The cold makes it extremely difficult to work in the Arctic," explains Dr Artières, "so it was a matter of finding the best compromise between a solution that works well and is also easy to install, as well as being inexpensive and environmentally friendly."

Geobags made from different types of textile were installed along a 100 metre stretch of coastline near a mining camp on Svalbard operated by project partner Store Norske Spitsbergen Grubekompani (SNSG). Over three winters, their response was monitored to the cold, ice movement, currents, abrasion and other stresses characteristic of the area. The results were so good that SNSG used the Geobags to repair a damaged quay wall in the local harbour instead of locally available rocks.

A growing market

The inexpensive, sustainable solution will be launched on the market in early 2010. With climate change models predicting that the north-western coasts of Canada and Alaska will be ice-free by 2020, and an estimated 25% of the world's undiscovered oil and gas resources located in the Arctic, the market potential for Geobags is considerable, as all new operations will require land-based infrastructures in need of protection. Several new Russian fields are also currently planned in the Barents and Pechora seas.

Given the ecologically fragile nature of arctic regions, Geobags have another significant advantage, says Dr Artières. "Geobag infrastructures are reversible – if they are no longer required, they can simply be emptied and the place left exactly as it was before construction."

Smart supervision

The condition ofGeobags when they are in situ is relatively easy to monitor, as being positioned on the ground surface of a site they can be checked regularly and replaced if necessary. However, the geosynthetic products used in more temperate climates for dams and flood-protection dikes and embankments are installed invisibly under soil, making it impossible to tell how well they are functioning.

TenCate has recently completed another EUREKA project, E! 3361 SAFEDIKE, which has developed a new, intelligent generation of geosynthetic textiles incorporating sensors and fibre optic technology that enable their condition to be monitored remotely.

"The GeoDetect® system not only monitors a product remotely but also acts as an early warning system, explains Dr Artières. "If the geosynthetic textile's performance starts deteriorating or there's some other malfunction, the system can identify the source of the trouble. The site managers can make a repair before any major damage occurs, especially something potentially catastrophic like a dike or dam failure."

Dr. O. Artieres | EurekAlert!
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=8690559

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>