Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eco-friendly defence against erosion in arctic regions

09.10.2009
A robust geosynthetic bag developed by the French and Norwegian partners of EUREKA project E! 3702 GISSAC can be filled with locally available, low-grade soil and used to build protective infrastructures capable of withstanding sea and ice erosion in the harsh Arctic climate.

Coastal roads and harbours are traditionally protected from sea erosion by giant blocks of rock or geosynthetic bags filled with material, all locally sourced where possible. In the Arctic and other cold northern regions, where good quality material is often scarce, the prohibitive economic and environmental cost of importing suitable matter has led to a demand for solutions that make use of whatever low quality soil or other material is available.

Geosynthetic bags, which are typically woven textile, polymer-based envelopes, have been successfully used for more than 40 years in temperate climates, but have not been tested in sub-zero conditions.

Answering local needs

EUREKA project E! 3702 GISSAC was initiated by TenCate Geosynthetics France, a world-leader in the design and production of geosynthetic materials for civil engineering projects. The company wanted to find out if geosynthetic bags worked in very cold conditions, and to come up with a product that was both environmentally friendly and sustainable.

"Our northern European sales offices asked us to develop suitable materials for cold regions where the temperature is rarely above zero," explains Dr Olivier Artières, TenCate's Innovation Project Manager and Senior Expert. "They face specific problems such as the thawing and freezing cycles of water that make the construction of infrastructures like roads and jetties difficult.

"Following a discussion with colleagues at Norway's SINTEF Research Institute we decided to talk to hold a brainstorming session with local users to gain a better understanding of their needs and the kind of solution they were looking for. They told us that constructing embankments under water to create dykes and breakwaters was a major problem, and protecting against coastal erosion. This was particularly so in areas such as Svalbard, where traditional solutions are too expensive or don't comply with strict environmental regulations, and which also lack suitable geological material for building protective infrastructures."

A robust and versatile solution

The GISSAC project team, with the support of EUREKA and the Norwegian-French Foundation, set about developing envelopes made with textiles comprising different structures (woven, non-woven and knitted) and different types of polymers. Laboratory tests and analysis of on-site results were conducted by French partner CETE Est LRPC Nancy and Norwegian subcontractor UNIS, with PhD and MsC students taking part in the fieldwork.

The project also entailed establishing the optimum shape and size of the geosynthetic bags, or Geobags, and the best method of installation. "The cold makes it extremely difficult to work in the Arctic," explains Dr Artières, "so it was a matter of finding the best compromise between a solution that works well and is also easy to install, as well as being inexpensive and environmentally friendly."

Geobags made from different types of textile were installed along a 100 metre stretch of coastline near a mining camp on Svalbard operated by project partner Store Norske Spitsbergen Grubekompani (SNSG). Over three winters, their response was monitored to the cold, ice movement, currents, abrasion and other stresses characteristic of the area. The results were so good that SNSG used the Geobags to repair a damaged quay wall in the local harbour instead of locally available rocks.

A growing market

The inexpensive, sustainable solution will be launched on the market in early 2010. With climate change models predicting that the north-western coasts of Canada and Alaska will be ice-free by 2020, and an estimated 25% of the world's undiscovered oil and gas resources located in the Arctic, the market potential for Geobags is considerable, as all new operations will require land-based infrastructures in need of protection. Several new Russian fields are also currently planned in the Barents and Pechora seas.

Given the ecologically fragile nature of arctic regions, Geobags have another significant advantage, says Dr Artières. "Geobag infrastructures are reversible – if they are no longer required, they can simply be emptied and the place left exactly as it was before construction."

Smart supervision

The condition ofGeobags when they are in situ is relatively easy to monitor, as being positioned on the ground surface of a site they can be checked regularly and replaced if necessary. However, the geosynthetic products used in more temperate climates for dams and flood-protection dikes and embankments are installed invisibly under soil, making it impossible to tell how well they are functioning.

TenCate has recently completed another EUREKA project, E! 3361 SAFEDIKE, which has developed a new, intelligent generation of geosynthetic textiles incorporating sensors and fibre optic technology that enable their condition to be monitored remotely.

"The GeoDetect® system not only monitors a product remotely but also acts as an early warning system, explains Dr Artières. "If the geosynthetic textile's performance starts deteriorating or there's some other malfunction, the system can identify the source of the trouble. The site managers can make a repair before any major damage occurs, especially something potentially catastrophic like a dike or dam failure."

Dr. O. Artieres | EurekAlert!
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=8690559

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>