Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthworm activity can alter forests' carbon-carrying capabilities

29.10.2008
Earthworms can change the chemical nature of the carbon in North American forest litter and soils, potentially affecting the amount of carbon stored in forests, according to Purdue University researchers.

The Purdue scientists, along with collaborators from the Smithsonian Institution and Johns Hopkins University, study the habits of earthworms originally brought to North America from Europe. They want to determine the earthworms' effect on forest chemistry by comparing carbon composition in forests that vary in earthworm activity.

Some earthworms eat fallen leaves and other plant material - the litter of the forest floor - while others eat roots or soil organic matter. This begins a decomposition process in which organic materials pass through the animals' digestive tracts and back into the soil.

The research team found that forests with greater numbers of invasive earthworms tend to have litter and soil organic matter enriched in the plant material lignin, which is typically harder for bacteria to decompose, said Purdue biogeochemist Timothy Filley. Sites with low numbers of these earthworms accumulate plant carbon in forms more easily degraded by bacteria.

Overall, the amount of carbon in the litter and duff layer, which is the surface mat of decaying organic matter and roots, decreases because of earthworm activity. However, the change in carbon chemistry may make it harder for soil organisms to decompose the carbon remains. After earthworms feed on forest litter, they take the carbon down into the soil and mix it in, potentially leading to a buildup of carbon in the soil.

"If the litter just stays on the surface of the soil, then it's likely that normal oxidation of organic matter happens and a lot of that carbon will just go into the atmosphere," said Cliff Johnston, a Purdue environmental chemist and professor of agronomy. "However, if carbon can bind to the soil particles, such as clay, it might be a long-term way of stabilizing carbon."

Another way earthworm activity may affect the fate of carbon and the environment is in the thickness of layers of leaves and debris left on forest floors. Bare soil is generally very dark, absorbing more sunlight, which may dry it out quickly. A layer of lightly colored leaves is moderately reflective and holds moisture near the soil. Either condition may affect factors such as the warming of forest soil and the timing of snowmelt.

"Ultimately, we will look at such things to determine the potential invasive earthworms have in changing the flux of CO2 out of the forest and how much that could impact climate change," said Filley, who also is an associate professor of earth and atmospheric sciences.

The earthworms that the team studies were brought to North America by early European colonists, probably in the ships' ballasts or in plant soil. In northern North American forests the settlers found land devoid of such creatures because the worms never reoccupied soils formed when the glaciers melted.

In addition, earthworms don't move very fast. It's estimated they have migrated under their own power only about 100-200 kilometers in the past 10,000 years since the glaciers.

"In some forests, such as ones we are working at in northern Minnesota, we find soils where earthworms are only now being introduced." Filley said. "The main agents of introduction in such areas are discarded fishing bait in nearby lakes, transport between forest sites in tire treads and the movement of soil."

The research team reported findings of their ongoing study in a recent issue of the Journal of Geophysical Research. The National Science Foundation has provided funds to continue the work.

For this study, Filley, Johnston and their collaborators monitor earthworm activity at the Smithsonian Environmental Research Center forest area in Maryland. The scientists set up plots in which they manipulate the amount of litter on the ground and watch how fast the worms remove it.

In some areas of the forest, more than 350 worms can be found in one square meter.

"The impact of that many worms is huge for the forest ecosystem as from spring to fall they actively consume litter and mix it into the soil, leaving only a bare surface by year's end." Filley said.

In contrast, sites that have no earthworms have many years of accumulated litter and organic matter above the soil. This has implications for plant seed germination, water holding capacity and infiltration of the forest floor, among other things.

"The earthworms fundamentally change how the microbial community is decomposing," Filley said. "When they eat roots, they also eat other organisms that help to distribute nutrients between plants. Worms may throw off the timing of nutrient delivery."

Other members of the research team are Melissa McCormick and Dennis Whigham, both of the Smithsonian Environmental Research Center; Susan Crow of the Purdue Department of Earth and Atmospheric Sciences and now at Queen's University Belfast, UK; Katalin Szlavecz of the Johns Hopkins Department of Earth and Planetary Sciences; and Ronald van den Heuvel, formerly of the Smithsonian center and now at Landscape Ecology, Institute of Environmental Biology, Utrecht University, Netherlands. Both Johnston and Filley are members of the Purdue Climate Change Research Center.

Contact: Beth Forbes, (765) 494-2722, forbes@purdue.edu
Sources: Timothy Filley, (765) 494-6581, filley@pudue.edu
Cliff Johnston, (765) 496-1716, cliffjohnston@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>