Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthworm activity can alter forests' carbon-carrying capabilities

29.10.2008
Earthworms can change the chemical nature of the carbon in North American forest litter and soils, potentially affecting the amount of carbon stored in forests, according to Purdue University researchers.

The Purdue scientists, along with collaborators from the Smithsonian Institution and Johns Hopkins University, study the habits of earthworms originally brought to North America from Europe. They want to determine the earthworms' effect on forest chemistry by comparing carbon composition in forests that vary in earthworm activity.

Some earthworms eat fallen leaves and other plant material - the litter of the forest floor - while others eat roots or soil organic matter. This begins a decomposition process in which organic materials pass through the animals' digestive tracts and back into the soil.

The research team found that forests with greater numbers of invasive earthworms tend to have litter and soil organic matter enriched in the plant material lignin, which is typically harder for bacteria to decompose, said Purdue biogeochemist Timothy Filley. Sites with low numbers of these earthworms accumulate plant carbon in forms more easily degraded by bacteria.

Overall, the amount of carbon in the litter and duff layer, which is the surface mat of decaying organic matter and roots, decreases because of earthworm activity. However, the change in carbon chemistry may make it harder for soil organisms to decompose the carbon remains. After earthworms feed on forest litter, they take the carbon down into the soil and mix it in, potentially leading to a buildup of carbon in the soil.

"If the litter just stays on the surface of the soil, then it's likely that normal oxidation of organic matter happens and a lot of that carbon will just go into the atmosphere," said Cliff Johnston, a Purdue environmental chemist and professor of agronomy. "However, if carbon can bind to the soil particles, such as clay, it might be a long-term way of stabilizing carbon."

Another way earthworm activity may affect the fate of carbon and the environment is in the thickness of layers of leaves and debris left on forest floors. Bare soil is generally very dark, absorbing more sunlight, which may dry it out quickly. A layer of lightly colored leaves is moderately reflective and holds moisture near the soil. Either condition may affect factors such as the warming of forest soil and the timing of snowmelt.

"Ultimately, we will look at such things to determine the potential invasive earthworms have in changing the flux of CO2 out of the forest and how much that could impact climate change," said Filley, who also is an associate professor of earth and atmospheric sciences.

The earthworms that the team studies were brought to North America by early European colonists, probably in the ships' ballasts or in plant soil. In northern North American forests the settlers found land devoid of such creatures because the worms never reoccupied soils formed when the glaciers melted.

In addition, earthworms don't move very fast. It's estimated they have migrated under their own power only about 100-200 kilometers in the past 10,000 years since the glaciers.

"In some forests, such as ones we are working at in northern Minnesota, we find soils where earthworms are only now being introduced." Filley said. "The main agents of introduction in such areas are discarded fishing bait in nearby lakes, transport between forest sites in tire treads and the movement of soil."

The research team reported findings of their ongoing study in a recent issue of the Journal of Geophysical Research. The National Science Foundation has provided funds to continue the work.

For this study, Filley, Johnston and their collaborators monitor earthworm activity at the Smithsonian Environmental Research Center forest area in Maryland. The scientists set up plots in which they manipulate the amount of litter on the ground and watch how fast the worms remove it.

In some areas of the forest, more than 350 worms can be found in one square meter.

"The impact of that many worms is huge for the forest ecosystem as from spring to fall they actively consume litter and mix it into the soil, leaving only a bare surface by year's end." Filley said.

In contrast, sites that have no earthworms have many years of accumulated litter and organic matter above the soil. This has implications for plant seed germination, water holding capacity and infiltration of the forest floor, among other things.

"The earthworms fundamentally change how the microbial community is decomposing," Filley said. "When they eat roots, they also eat other organisms that help to distribute nutrients between plants. Worms may throw off the timing of nutrient delivery."

Other members of the research team are Melissa McCormick and Dennis Whigham, both of the Smithsonian Environmental Research Center; Susan Crow of the Purdue Department of Earth and Atmospheric Sciences and now at Queen's University Belfast, UK; Katalin Szlavecz of the Johns Hopkins Department of Earth and Planetary Sciences; and Ronald van den Heuvel, formerly of the Smithsonian center and now at Landscape Ecology, Institute of Environmental Biology, Utrecht University, Netherlands. Both Johnston and Filley are members of the Purdue Climate Change Research Center.

Contact: Beth Forbes, (765) 494-2722, forbes@purdue.edu
Sources: Timothy Filley, (765) 494-6581, filley@pudue.edu
Cliff Johnston, (765) 496-1716, cliffjohnston@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>