Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake Soil Effects Study Could Improve Buildings

19.07.2011
Japan’s March 11 Tohoku Earthquake is among the strongest ever recorded, and because it struck one of the world’s most heavily instrumented seismic zones, this natural disaster is providing scientists with a treasure trove of data on rare magnitude 9 earthquakes. Among the new information is what is believed to be the first study of how a shock this powerful affects the rock and soil beneath the surface.

Analyzing data from multiple measurement stations, scientists at the Georgia Institute of Technology found that the quake weakened subsurface materials by as much as 70 percent. That nonlinear response from the top layer of the Earth’s crust affected how the movement of faults deep beneath the surface was delivered to buildings, bridges and other structures.

Understanding how the soil responds to powerful earthquakes could be important to engineers and architects designing future buildings to withstand the level of acceleration measured in this quake. The information will also help seismologists develop new models to predict the effects of these rare and extremely powerful events.

“The degree of nonlinearity in the soil strength was among the largest ever observed,” said Zhigang Peng, an associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences. “This is perhaps not too surprising because the ground shaking generated by this earthquake – acceleration as much as three times the Earth’s gravity – is also among the highest ever observed.”

The findings were reported in a special issue of the journal Earth, Planets and Space (EPS). The research was sponsored the National Science Foundation (NSF) and by the Southern California Earthquake Center (SCEC).

Peng and graduate student Chunquan Wu were among the first scientists to examine data recorded by the high-quality seismometers that are part of the Japanese Strong Motion Network KIK-Net. The stations have accelerometers both on the surface and in boreholes located on bedrock far beneath it. The researchers chose to study data from six stations that have strong velocity contrasts between the surface soil layers and the underlying bedrock.

“In this study, we were trying to understand the relationship between soil nonlinearity and peak ground acceleration (PGA), which is a measure the ground shaking,” said Wu. “We want to understand what parameters control this kind of response.”

By comparing data on the acceleration of motion from sensors on the bedrock to comparable information from surface sensors, they were able to study how the properties of the soil changed in response to the shaking. The researchers computed the spectral ratios of each pair of station measurements, and then used the ratios to track the temporal changes in the soil response at various sites at different levels of peak ground acceleration.

“The shear modulus of the soil was reduced as much as 70 percent during the strongest shaking,” Wu explained. “Typically, near the surface you have soil and several layers of sedimentary rock. Below that, you have bedrock, which is much harder than the surface material. When seismic waves propagate, the top layers of soil can amplify them.”

Nonlinear response from soils is not unusual, though it varies depending on their composition. Similar but smaller effects have been seen in other earthquake-prone areas such as California and Turkey, Wu said. The shallow layers of the Earth’s upper crust can be complex, composed of varying types of soil, clay particles, gravel and larger rock layered in sediments.

Because the March 11 quake lasted an unusually long time and generated a wide range of ground motions of greatly varying strengths, it provided an unprecedented data set to scientists interested in studying nonlinear soil behavior.

Beyond the immediate effect of the strongest shock, the researchers were interested in how the soils recover their strength after the shaking stops. That recovery time can vary from fractions of a second to several years, Wu said.

“It is still not clear whether there could be longer recovery times at certain sites,” Wu noted. “This is a function of soil type and other factors.”

If the soils are very porous, water can lengthen the recovery. “For porous media, the ground shaking could cause water to go into the pores, which will also reduce the shear modulus of the soil. If water is involved, the recovery time will be much longer.”

Soil response to aftershocks, which ranged up to magnitude 7.9 after the main Tohoku earthquake, was also studied.

Information developed by the Georgia Tech researchers will be provided to seismologists developing new hazard models of very powerful earthquakes. Knowing how soils respond to strong shaking is also important to predicting how motion deep within the Earth will be translated to structures built on the surface.

“Understanding how soil loses and regains its strength during and after large earthquakes is crucial for better understanding and predicting strong ground motions,” Peng noted. “This, in turn, would help earthquake engineers to improve the design of buildings and foundations, and could ultimately help to protect people in future earthquakes.”

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Robinson (404-385-3364)(abby@innovate.gatech.edu).

Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>