Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake simulation tops one quadrillion flops: Computational record on SuperMUC

16.04.2014

A team of computer scientists, mathematicians and geophysicists at Technische Universitaet Muenchen (TUM) and Ludwig-Maximillians Universitaet Muenchen (LMU) have – with the support of the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities (LRZ) – optimized the SeisSol earthquake simulation software on the SuperMUC high performance computer at the LRZ to push its performance beyond the “magical” one petaflop/s mark – one quadrillion floating point operations per second.

Geophysicists use the SeisSol earthquake simulation software to investigate rupture processes and seismic waves beneath the Earth’s surface. Their goal is to simulate earthquakes as accurately as possible to be better prepared for future events and to better understand the fundamental underlying mechanisms. However, the calculations involved in this kind of simulation are so complex that they push even super computers to their limits.


Visualization of vibrations inside the Merapi volcano – Image: Alex Breuer (TUM) / Christian Pelties (LMU)

15.04.2014, Research news

A team of computer scientists, mathematicians and geophysicists at Technische Universitaet Muenchen (TUM) and Ludwig-Maximillians Universitaet Muenchen (LMU) have – with the support of the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities (LRZ) – optimized the SeisSol earthquake simulation software on the SuperMUC high performance computer at the LRZ to push its performance beyond the “magical” one petaflop/s mark – one quadrillion floating point operations per second.

Geophysicists use the SeisSol earthquake simulation software to investigate rupture

In a collaborative effort, the workgroups led by Dr. Christian Pelties at the Department of Geo and Environmental Sciences at LMU and Professor Michael Bader at the Department of Informatics at TUM have optimized the SeisSol program for the parallel architecture of the Garching supercomputer “SuperMUC”, thereby speeding up calculations by a factor of five.

Using a virtual experiment they achieved a new record on the SuperMUC: To simulate the vibrations inside the geometrically complex Merapi volcano on the island of Java, the supercomputer executed 1.09 quadrillion floating point operations per second. SeisSol maintained this unusually high performance level throughout the entire three hour simulation run using all of SuperMUC’s 147,456 processor cores.

Complete parallelization

This was possible only following the extensive optimization and the complete parallelization of the 70,000 lines of SeisSol code, allowing a peak performance of up to 1.42 petaflops. This corresponds to 44.5 percent of Super MUC’s theoretically available capacity, making SeisSol one of the most efficient simulation programs of its kind worldwide.

“Thanks to the extreme performance now achievable, we can run five times as many models or models that are five times as large to achieve significantly more accurate results. Our simulations are thus inching ever closer to reality,” says the geophysicist Dr. Christian Pelties. “This will allow us to better understand many fundamental mechanisms of earthquakes and hopefully be better prepared for future events.”

The next steps are earthquake simulations that include rupture processes on the meter scale as well as the resultant destructive seismic waves that propagate across hundreds of kilometers. The results will improve the understanding of earthquakes and allow a better assessment of potential future events.

“Speeding up the simulation software by a factor of five is not only an important step for geophysical research,” says Professor Michael Bader of the Department of Informatics at TUM. “We are, at the same time, preparing the applied methodologies and software packages for the next generation of supercomputers that will routinely host the respective simulations for diverse geoscience applications.”

Besides Michael Bader and Christian Pelties also Alexander Breuer, Dr. Alexander Heinecke and Sebastian Rettenberger (TUM) as well as Dr. Alice Agnes Gabriel and Stefan Wenk (LMU) worked on the project. In June the results will be presented at the International Supercomputing Conference in Leipzig (ISC’14, Leipzig, 22-June 26, 2014; title: Sustained Petascale Performance of Seismic Simulation with SeisSol on SuperMUC)

The project was funded by the Volkswagen Foundation (ASCETE project), the Bavarian Competence Network for Technical and Scientific High Performance Computing (KONWIHR), the German Research Foundation (DFG) and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities. The continuing development of SeisSol is also supported by the “DEEP Extended Reach”, VERCE and QUEST projects of the European Union.

Contact:

Prof. Dr. Michael Georg Bader
Department of Informatics, Technische Universitaet Muenchen
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 35831 7810, E-MailInternet

Dr. Christian Pelties
Geophysics, Department of Earth and Environmental Sciences
Ludwig-Maximilians Universitaet Muenchen
Theresienstraße 41, 80333 Munich, Germany
Tel.: +49 89 2180 4214, E-MailInternet

Dr. Andreas Battenberg | Eurek Alert!

Further reports about: Earthquake Environmental LMU SuperMUC Supercomputing TUM mechanisms waves

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>