Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


US earthquake resilience needs strengthening, says new report

A new National Research Council report presents a 20-year road map for increasing U.S. resilience to earthquakes, including a major earthquake that could strike a highly populated area. The report was mostly written prior to the March 11 earthquake in Japan, but the committee of experts who authored it noted that the Japanese experience is a reminder of the devastation that can occur even in a country acknowledged as a leader in implementing earthquake-resilience measures.

In recent decades, destructive earthquakes in the U.S. have only been moderate to strong in size or have occurred in sparsely populated areas; the country has not suffered a truly devastating earthquake in more than a hundred years.

Because of this, the committee expressed concern that many people have been lulled into a false sense of security that the nation already is earthquake resilient. The committee highlighted the results of a recent earthquake-scenario exercise in Los Angeles, which indicated that a magnitude-7.8 earthquake would result in staggering losses, and noted the lack of disaster resilience demonstrated by Hurricane Katrina.

The report identifies an 18-task road map for implementing the strategic plan adopted by the National Earthquake Hazards Reduction Program (NEHRP), which would make the nation earthquake resilient. Established by Congress in 1977, the multiagency program is led by the National Institute of Standards and Technology and includes the Federal Emergency Management Agency, National Science Foundation, and U.S. Geological Survey.

The report endorses NEHRP's 2008 strategic plan and stresses that the road map tasks are required to develop the nation's capacity to maintain important community functions and recover quickly following damaging earthquakes. The committee also emphasized that a dedicated and strategic effort is needed to diffuse knowledge gained by the NEHRP into communities.

Funding for NEHRP totaled $129.7 million in 2009. The committee estimated that the cost for its earthquake-resilience road map would be $306 million annually over the first five years.

The 18 tasks are:

Undertake additional research to improve understanding of earthquake phenomena and to increase earthquake-prediction capabilities.

Deploy the remaining 75 percent of the Advanced National Seismic System, which provides magnitude and location alerts within a few minutes after an earthquake as well as the basic data for many of the road map tasks.

Evaluate, test, and deploy earthquake early-warning systems.

Complete coverage of national and urban seismic hazard maps to identify at-risk areas.

Develop and implement earthquake forecasting to provide communities with information on how seismic hazards change with time.

Develop scenarios that integrate earth science, engineering, and social science information so that communities can visualize earthquake and tsunami impacts and mitigate potential effects.

Integrate science, engineering, and social science information in an advanced GIS-based platform to improve earthquake risk assessment and loss estimation.

Model expected and improvised emergency response and recovery activities and outcomes to improve pre-disaster mitigation and preparedness.

Capture, disseminate, and create a repository of the critical information that describes the geological, structural, institutional, and socio-economic impacts and disaster response after earthquakes occur.

Support social sciences research to evaluate mitigation and recovery.

Establish an observatory network to measure, monitor, and model the disaster vulnerability and resilience of communities.

Integrate the knowledge gained from many of the tasks to enable accurate simulations of fault rupture, seismic wave propagation through bedrock, and soil-structure interaction to understand the response of buildings and other structures to shaking and compute reliable estimates of financial loss, business interruption, and casualties.

Develop new techniques for evaluating and retrofitting existing buildings to better withstand earthquakes.

Enhance performance-based engineering to achieve better building design and enable improved codes and standards for buildings and other structures.

Review and update standards so that critical "lifeline" infrastructure -- such as electricity, highways, and water supply -- can function following an earthquake.

Develop and deploy the next generation of "green" high-performance construction materials and components for use in buildings' seismic framing systems.

Encourage and coordinate technology transfer between the NEHRP and the private sector.

Initiate earthquake resiliency pilot projects in local communities to improve awareness, reduce risk, and enhance emergency preparedness and recovery capacity.

The report was sponsored by the National Institute of Standards and Technology. The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies. They are independent, nonprofit institutions that provide science, technology, and health policy advice under an 1863 congressional charter. Committee members, who serve pro bono as volunteers, are chosen by the Academies for each study based on their expertise and experience and must satisfy the Academies' conflict-of-interest standards. The resulting consensus reports undergo external peer review before completion. For more information, visit A committee roster follows.

Jennifer Walsh, Media Relations Officer
Shaquanna Shields, Media Relations Assistant
Office of News and Public Information
202-334-2138; e-mail
Pre-publication copies of National Earthquake Resilience: Research, Implementation, and Outreach are available from the National Academies Press; tel. 202-334-3313 or 1-800-624-6242 or on the Internet at Reporters may obtain a copy from the Office of News and Public Information (contacts listed above).
Division on Earth and Life Studies
Board on Earth Sciences and Resources
Committee on National Earthquake Resilience – Research, Implementation, and Outreach
Robert M. Hamilton (chair)
Independent Consultant
Zelienople, Pa.
Richard A. Andrews
Independent Consultant
Relands, Calif.
Robert A. Bauer
Engineering and Coastal Geology
Illinois State Geological Survey
Institute of Natural Resource Sustainability
University of Illinois
Jane A. Bullock
Bullock and Haddow LLC
Reston, Va.
Stephanie E. Chang
School of Community and Regional Planning and Institute for Resources, Environment, and Sustainability
University of British Columbia
William T. Holmes
Vice President
Rutherford & Chekene, Consulting Engineers
San Francisco
Laurie A. Johnson
Laurie Johnson Consulting and Research
San Francisco
Thomas H. Jordan*
Southern California Earthquake Center, and
W.M. Keck Professor of Earth Sciences
Department of Earth Sciences
University of Southern California
Los Angeles
Gary A. Kreps
Professor Emeritus
Sociology Department
College of William and Mary
Williamsburg, Va.
Adam Z. Rose
Research Professor
School of Policy, Planning, and Development
University of Southern California
Los Angeles
L. Thomas Tobin
Tobin & Associates
Mill Valley, Calif.
Andrew S. Whittaker
Department of Civil, Structural, and
Environmental Engineering
State University of New York
David Feary
Study Director
* Member, National Academy of Sciences

Jennifer Walsh | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>