Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake engineers release report on damage in Haiti

23.02.2010
A five-person team sent to evaluate damage from the devastating magnitude-7 earthquake that struck Haiti on Jan. 12 found no surface evidence of the fault that might have caused the quake, but installed four instruments to measure aftershocks and help pinpoint the epicenter.

University of Washington civil and environmental engineering professor Marc Eberhard led the team that provided engineering support to the United States Southern Command, responsible for all U.S. military activities in South and Central America.

Eberhard is lead author on a report released late last week to the national Earthquake Engineering Research Institute and the United States Geological Survey, both of which sponsored the trip. The report is posted at http://tinyurl.com/yl7gtwb.

A main conclusion is that much of the loss of human life could have been prevented by using earthquake-resistant designs and construction, as well as improved quality control in concrete and masonry work. The authors recommend that simple and cost-effective earthquake engineering be emphasized in Haiti's rebuilding effort.

The group also gathered more seismic data. Assessing an earthquake's magnitude can be done from afar, Eberhard said, but establishing the location requires several stations fairly close to the earthquake's center. Such monitoring stations were not present in Haiti. Knowing the location will help understand what caused the earthquake and forecast the likelihood of future quakes in the area, he said.

The team provided a ground assessment of places that were worst hit, including the port in Port-au-Prince, the cathedral, the National Palace, the Hotel Montana and the Union School, attended by children of many nationalities. They photographed damage in smaller towns and assessed the safety of hospitals, schools, bridges and other critical facilities.

A survey of 107 buildings in a heavily damaged part of downtown Port-au-Prince found that 28 percent had collapsed and a third would require repairs. A survey of 52 buildings in nearby Léogâne found that more than 90 percent had either collapsed or will require repairs.

"A lot of the damaged structures will have to be destroyed," Eberhard commented. "It's not just 100 buildings or 1,000 buildings. It's a huge number of buildings, which I can't even estimate."

Many people asked team members to inspect buildings where the occupants were camped outside because they feared a collapse.

"There's an enormous amount of fear," Eberhard said. "People may see cracks in their houses. A large part of what we were doing was identifying what was serious damage versus what was cosmetic damage."

"Probably the most satisfying thing we did was to walk through the building and get people back inside."

Eberhard traveled into Port-au-Prince on a military airplane on Jan. 26. He and other team members camped in front of the U.S. embassy during the weeklong trip.

The group kept a blog of the trip at http://neescomm.blogspot.com/. Eberhard says he omitted some of the most disturbing images because members of his daughter's second-grade class were reading the posts.

This is not the first such assignment for Eberhard, who did reconnaissance after major earthquakes in California, Seattle, Taiwan and Costa Rica. But he says this was the most difficult on a personal level.

"Usually when I go to earthquakes I find that the amount of damage is less than what appears on the television," Eberhard said. "In this case it was much more."

"The main reason for the difference is that usually when you see earthquake coverage the cameras will focus on one place that's really damaged, and you don't realize that around it there are plenty of things that are just fine. In this case, the cameras focused on one place that's really damaged, but because the cameras have a limited field of view you don't realize that the cameras could be panned 360 degrees and you would see the same thing."

The poverty of the people combined with the density of population and lack of building codes resulted in the widespread devastation, he said.

A follow-up team of engineers is scheduled to travel to Haiti on Feb. 28.

The engineering community, working with the United Nations and United States Agency for International Development, is assessing the next steps, including translating into French and Creole documents that explain in simple words and pictures how to rebuild structures that will be earthquake resistant.

Other members of the reconnaissance mission were Steven Baldridge, a structural engineer at Baldridge and Associates in Honolulu; Justin Marshall, a structural engineering professor at Auburn University in Alabama; Walter Mooney, a seismologist at the U.S. Geological Survey in California; and Glenn Rix, a geotechnical engineering professor at the Georgia Institute of Technology. Funding was provided by the National Science Foundation, the Earthquake Engineering Research Institute, the Geo-engineering Extreme Events Reconnaissance, the Applied Technology Council and the Network for Earthquake Engineering Simulation.

For more information, contact Eberhard at 206-543-4815 or eberhard@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>