Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake engineers release report on damage in Haiti

23.02.2010
A five-person team sent to evaluate damage from the devastating magnitude-7 earthquake that struck Haiti on Jan. 12 found no surface evidence of the fault that might have caused the quake, but installed four instruments to measure aftershocks and help pinpoint the epicenter.

University of Washington civil and environmental engineering professor Marc Eberhard led the team that provided engineering support to the United States Southern Command, responsible for all U.S. military activities in South and Central America.

Eberhard is lead author on a report released late last week to the national Earthquake Engineering Research Institute and the United States Geological Survey, both of which sponsored the trip. The report is posted at http://tinyurl.com/yl7gtwb.

A main conclusion is that much of the loss of human life could have been prevented by using earthquake-resistant designs and construction, as well as improved quality control in concrete and masonry work. The authors recommend that simple and cost-effective earthquake engineering be emphasized in Haiti's rebuilding effort.

The group also gathered more seismic data. Assessing an earthquake's magnitude can be done from afar, Eberhard said, but establishing the location requires several stations fairly close to the earthquake's center. Such monitoring stations were not present in Haiti. Knowing the location will help understand what caused the earthquake and forecast the likelihood of future quakes in the area, he said.

The team provided a ground assessment of places that were worst hit, including the port in Port-au-Prince, the cathedral, the National Palace, the Hotel Montana and the Union School, attended by children of many nationalities. They photographed damage in smaller towns and assessed the safety of hospitals, schools, bridges and other critical facilities.

A survey of 107 buildings in a heavily damaged part of downtown Port-au-Prince found that 28 percent had collapsed and a third would require repairs. A survey of 52 buildings in nearby Léogâne found that more than 90 percent had either collapsed or will require repairs.

"A lot of the damaged structures will have to be destroyed," Eberhard commented. "It's not just 100 buildings or 1,000 buildings. It's a huge number of buildings, which I can't even estimate."

Many people asked team members to inspect buildings where the occupants were camped outside because they feared a collapse.

"There's an enormous amount of fear," Eberhard said. "People may see cracks in their houses. A large part of what we were doing was identifying what was serious damage versus what was cosmetic damage."

"Probably the most satisfying thing we did was to walk through the building and get people back inside."

Eberhard traveled into Port-au-Prince on a military airplane on Jan. 26. He and other team members camped in front of the U.S. embassy during the weeklong trip.

The group kept a blog of the trip at http://neescomm.blogspot.com/. Eberhard says he omitted some of the most disturbing images because members of his daughter's second-grade class were reading the posts.

This is not the first such assignment for Eberhard, who did reconnaissance after major earthquakes in California, Seattle, Taiwan and Costa Rica. But he says this was the most difficult on a personal level.

"Usually when I go to earthquakes I find that the amount of damage is less than what appears on the television," Eberhard said. "In this case it was much more."

"The main reason for the difference is that usually when you see earthquake coverage the cameras will focus on one place that's really damaged, and you don't realize that around it there are plenty of things that are just fine. In this case, the cameras focused on one place that's really damaged, but because the cameras have a limited field of view you don't realize that the cameras could be panned 360 degrees and you would see the same thing."

The poverty of the people combined with the density of population and lack of building codes resulted in the widespread devastation, he said.

A follow-up team of engineers is scheduled to travel to Haiti on Feb. 28.

The engineering community, working with the United Nations and United States Agency for International Development, is assessing the next steps, including translating into French and Creole documents that explain in simple words and pictures how to rebuild structures that will be earthquake resistant.

Other members of the reconnaissance mission were Steven Baldridge, a structural engineer at Baldridge and Associates in Honolulu; Justin Marshall, a structural engineering professor at Auburn University in Alabama; Walter Mooney, a seismologist at the U.S. Geological Survey in California; and Glenn Rix, a geotechnical engineering professor at the Georgia Institute of Technology. Funding was provided by the National Science Foundation, the Earthquake Engineering Research Institute, the Geo-engineering Extreme Events Reconnaissance, the Applied Technology Council and the Network for Earthquake Engineering Simulation.

For more information, contact Eberhard at 206-543-4815 or eberhard@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>