Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake in Chile -- a complicated fracture

10.03.2010
A jumping rupture process

The extremely strong earthquake in Chile on 27 February this year was a complicated rupture process, as scientists from the GFZ German Research Centre for Geosciences found out. Quakes with such magnitude virtually penetrate the entire Earth's crust.

After closer analysis of the seismic waves radiated by this earthquake during the first 134 seconds after start of the rupture, the researchers came to the conclusion that only the region around the actual epicentre was active during the first minutes. In the second minute the active zone moved north towards Santiago. After that the region south of Concepción became active for a short time. This rupturing trend agrees well with the distribution of the aftershocks during the following three days, as observed by the GEOFON-measuring network of the GFZ up to 03.03.2010.

In the year 1960, the strongest earthquake measured at all to date, with a magnitude of M=9.5, had its origin at Valdivia, south of the region affected now. "The quake of 27 February connects directly to the rupture process of Valdivia", explains Professor Jochen Zschau, Director of the Section "Earthquake Risk and Early Warning" at the GFZ. "With this, one of the last two seismic gaps along the west coast of South America might now be closed. With the exception of one last section, found in North Chile, the entire earth crust before the west coast of South America has been ruptured within the last 150 years."

The underlying plate tectonic procedure is such that the Nazca-Plate as part of the Pacific Ocean Floor moves eastwards with approximately seventy millimetres per year, collides with South America and thereby pushes under the continent. The hereby developing earthquakes belong to the strongest world-wide. In the course of about one century, the Earth's ruptures completely in a number of strong quakes from Patagonia in the South to Panama in the North. Even Darwin reported, in his diary, of the strong earthquake in Concepción on 20 February 1835 and the resulting Tsunami.

In order to examine the aftershock activity in the now fractured seismic gap, scientists from the GFZ are travelling to Chile on March 13, 2010 where, together with the Chilean Seismological Service, they will set-up a seismological-geodetic network in the area of Concepción-Santiago. Partners from Germany (IFM Geomar, Kiel; Free University of Berlin) and from abroad (Institut de Physique du Globe, Paris; University of Liverpool; United States Geological Survey; IRIS) are also taking part in this measuring campaign. The mission will last about three months. The results, one expects, will be able to provide an insight into the mechanisms of the fracture in the Earth's crust. This activity is financed on the German side by the GFZ.

Scientists from the GFZ have been examining the collision of the Nazca plate and the South American continent since 1994. As a result of numerous expeditions and measuring campaigns in this area this Potsdam Helmholtz Centre avails of the probably the most dense data record on such a subduction zone. "Within the framework of the DFG Priority Programme "Deformation processes in the Andes", and with the Geotechnology Project TIPTEQ we have just been able to collect a unique data record for the southern part of the Andes" says Professor Onno Oncken, Director of the Department Geodynamics and Geomaterials at the GFZ, and leader of these studies. The current quake puts us in the position to precisely compare the tectonics before and afterwards, a unique situation both internationally and in Earth science.

Currently, the GFZ operates a so-called Plate Boundary Observatory PBO in the north of Chile, exactly in the last remaining seismic gap in Chile. This observatory will be handed over to Chilean colleagues by the Chairman of the Board of the GFZ, Professor Reinhard Huettl, within the framework of the cooperation with the Earthquake Service of Chile during a festive event on 15 March.

The integrated field experiment is accompanied by the new Berlin-Brandenburg research platform Geo.X, which took up its work on 03 March 2010.

Illustrations in printable form can be found under: http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Bildergalerie+Chile-Erdbeben

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>