Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An earthquake or a snow avalanche has its own shape

20.12.2013
However, it is crucial what one observes – paper fracture or the avalanching of snow. The results were just published in the Nature Communications journal.

Avalanches of snow or earthquakes can be described in other ways than the well-known Gutenberg-Richter scale, which gives a prediction of how likely a big avalanche or event is.


Earthquakes (the picture shows the San Andreas fault) and snow avalanches (an avalanche in Mount Everest shown on lower left corner) are examples of systems exhibiting bursty avalanche dynamics. Individual bursts have a highly irregular, complex structure (upper left corner). However, they have also a typical, well-defined average shape which depends on certain fundamental properties of the system, i.e. its universality class in the language of physics (upper right corner).

Credit: Aalto University

Each avalanche or burst has its own typical shape or form, which tells for instance when most snow is sliding after the avalanche has started. The shape of can be predicted based on mathematical models, or one can find the right model by looking at the measured shape.

- We studied results from computer simulations, and found different kinds of forms of events. We then analyzed them with pen and paper, and together with our experimental collaborators, and concluded that our predictions for the avalanche shapes were correct, Mikko Alava explains.

The results can be applied to comparing experiments with simplified model systems, to a much greater depth. The whole shape of an avalanche holds much more information than say the Gutenberg-Richter index, even with a few other so-called critical exponents.

Link to the Nature Communications article: http://www.nature.com/ncomms/2013/131219/ncomms3927/full/ncomms3927.html

Contact information:

Professor Mikko Alava
mikko.alava@aalto.fi
Tel. +358 50 4132152
Academy Research Fellow Lasse Laurson
lasse.laurson@aalto.fi
Tel. +358 50 4333671
The research group http://physics.aalto.fi/groups/comp/csm/ is part of the Finnish Computational Nanoscience Centre of Excellence (COMP) http://physics.aalto.fi/groups/comp/
Department of Applied Physics
Aalto University School of Science

Mikko Alava | EurekAlert!
Further information:
http://www.aalto.fi

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>