Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An earthquake or a snow avalanche has its own shape

20.12.2013
However, it is crucial what one observes – paper fracture or the avalanching of snow. The results were just published in the Nature Communications journal.

Avalanches of snow or earthquakes can be described in other ways than the well-known Gutenberg-Richter scale, which gives a prediction of how likely a big avalanche or event is.


Earthquakes (the picture shows the San Andreas fault) and snow avalanches (an avalanche in Mount Everest shown on lower left corner) are examples of systems exhibiting bursty avalanche dynamics. Individual bursts have a highly irregular, complex structure (upper left corner). However, they have also a typical, well-defined average shape which depends on certain fundamental properties of the system, i.e. its universality class in the language of physics (upper right corner).

Credit: Aalto University

Each avalanche or burst has its own typical shape or form, which tells for instance when most snow is sliding after the avalanche has started. The shape of can be predicted based on mathematical models, or one can find the right model by looking at the measured shape.

- We studied results from computer simulations, and found different kinds of forms of events. We then analyzed them with pen and paper, and together with our experimental collaborators, and concluded that our predictions for the avalanche shapes were correct, Mikko Alava explains.

The results can be applied to comparing experiments with simplified model systems, to a much greater depth. The whole shape of an avalanche holds much more information than say the Gutenberg-Richter index, even with a few other so-called critical exponents.

Link to the Nature Communications article: http://www.nature.com/ncomms/2013/131219/ncomms3927/full/ncomms3927.html

Contact information:

Professor Mikko Alava
mikko.alava@aalto.fi
Tel. +358 50 4132152
Academy Research Fellow Lasse Laurson
lasse.laurson@aalto.fi
Tel. +358 50 4333671
The research group http://physics.aalto.fi/groups/comp/csm/ is part of the Finnish Computational Nanoscience Centre of Excellence (COMP) http://physics.aalto.fi/groups/comp/
Department of Applied Physics
Aalto University School of Science

Mikko Alava | EurekAlert!
Further information:
http://www.aalto.fi

More articles from Earth Sciences:

nachricht Only above-water microbes play a role in cave development
03.09.2015 | Penn State

nachricht NASA sees shapeless Tropical Depression 14E
03.09.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Saving coral reefs depends more on protecting fish than safeguarding locations

03.09.2015 | Ecology, The Environment and Conservation

Research team from Münster develops innovative catalytic chemistry process

03.09.2015 | Life Sciences

Together - Work - Experience

03.09.2015 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>