Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An earthquake or a snow avalanche has its own shape

20.12.2013
However, it is crucial what one observes – paper fracture or the avalanching of snow. The results were just published in the Nature Communications journal.

Avalanches of snow or earthquakes can be described in other ways than the well-known Gutenberg-Richter scale, which gives a prediction of how likely a big avalanche or event is.


Earthquakes (the picture shows the San Andreas fault) and snow avalanches (an avalanche in Mount Everest shown on lower left corner) are examples of systems exhibiting bursty avalanche dynamics. Individual bursts have a highly irregular, complex structure (upper left corner). However, they have also a typical, well-defined average shape which depends on certain fundamental properties of the system, i.e. its universality class in the language of physics (upper right corner).

Credit: Aalto University

Each avalanche or burst has its own typical shape or form, which tells for instance when most snow is sliding after the avalanche has started. The shape of can be predicted based on mathematical models, or one can find the right model by looking at the measured shape.

- We studied results from computer simulations, and found different kinds of forms of events. We then analyzed them with pen and paper, and together with our experimental collaborators, and concluded that our predictions for the avalanche shapes were correct, Mikko Alava explains.

The results can be applied to comparing experiments with simplified model systems, to a much greater depth. The whole shape of an avalanche holds much more information than say the Gutenberg-Richter index, even with a few other so-called critical exponents.

Link to the Nature Communications article: http://www.nature.com/ncomms/2013/131219/ncomms3927/full/ncomms3927.html

Contact information:

Professor Mikko Alava
mikko.alava@aalto.fi
Tel. +358 50 4132152
Academy Research Fellow Lasse Laurson
lasse.laurson@aalto.fi
Tel. +358 50 4333671
The research group http://physics.aalto.fi/groups/comp/csm/ is part of the Finnish Computational Nanoscience Centre of Excellence (COMP) http://physics.aalto.fi/groups/comp/
Department of Applied Physics
Aalto University School of Science

Mikko Alava | EurekAlert!
Further information:
http://www.aalto.fi

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>