Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth more sensitive to carbon dioxide than previously thought

08.12.2009
The Earth's temperature may be 30-50 percent more sensitive to atmospheric carbon dioxide than has previously been estimated, reports a new study published in Nature Geoscience this week

In the long term, the Earth's temperature may be 30-50% more sensitive to atmospheric carbon dioxide than has previously been estimated, reports a new study published in Nature Geoscience this week.

The results show that components of the Earth's climate system that vary over long timescales – such as land-ice and vegetation – have an important effect on this temperature sensitivity, but these factors are often neglected in current climate models.

Dan Lunt, from the University of Bristol, and colleagues compared results from a global climate model to temperature reconstructions of the Earth's environment three million years ago when global temperatures and carbon dioxide concentrations were relatively high. The temperature reconstructions were derived using data from three million-year-old sediments on the ocean floor.

Lunt said, "We found that, given the concentrations of carbon dioxide prevailing three million years ago, the model originally predicted a significantly smaller temperature increase than that indicated by the reconstructions. This led us to review what was missing from the model."

The authors demonstrate that the increased temperatures indicated by the reconstructions can be explained if factors that vary over long timescales, such as land-ice and vegetation, are included in the model. This is primarily because changes in vegetation and ice lead to more sunlight being absorbed, which in turn increases warming.

Including these long-term processes in the model resulted in an increased temperature response of the Earth to carbon dioxide, indicating that the Earth's temperature is more sensitive to carbon dioxide than previously recognised. Climate models used by bodies such as the Intergovernmental Panel on Climate Change often do not fully include these long-term processes, thus these models do not entirely represent the sensitivity of the Earth's temperature to carbon dioxide.

Alan Haywood, a co-author on the study from the University of Leeds, said "If we want to avoid dangerous climate change, this high sensitivity of the Earth to carbon dioxide should be taken into account when defining targets for the long-term stabilisation of atmospheric greenhouse-gas concentrations".

Lunt added: "This study has shown that studying past climates can provide important insights into how the Earth might change in the future."

Notes to Editors

A high resolution version of the image can be downloaded from here: https://www.bris.ac.uk/fluff/u/inclel/rpj2a57H_ZzLx_B_WoXnVgEL/

Image caption: The temperature response of the Earth (in degrees C) to an increase in atmospheric carbon dioxide from pre-industrial levels (280 parts per million by volume) to higher levels (400 parts per million by volume).

(a) shows predicted global temperatures when processes that adjust on relatively short-term timescales (for example sea-ice, clouds, and water vapour) are included in the model

(b) includes additional long-tem processes that adjust on relatively long timescales (vegetation and land-ice).

This research was funded by the Research Council UK and the British Antarctic Survey.

The paper: Earth system sensitivity inferred from Pliocene modelling and data by Daniel J. Lunt, Alan M. Haywood, Gavin A. Schmidt, Ulrich Salzmann, Paul J. Valdes and Harry J. Dowsett. Published online in Nature Geoscience on 6 December 2009.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>