Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why is the Earth’s mantle conductive?

04.12.2008
Researchers from INSU-CNRS, working with chemists at a CNRS research unit, have explained that the high conductivity of the Earth’s upper mantle is due to molten carbonates.

They demonstrated the very high conductivity of this form of carbon. Appearing in the 28 November issue of Science, their work has revealed the high carbon content of the interior of the upper mantle.

This composition can be directly linked to the quantity of carbon dioxide produced by 80% of volcanoes. This result is important for quantifying the carbon cycle, which contributes significantly to the greenhouse effect.

Geologists have long claimed that significant amounts of carbon have been present in the Earth’s mantle for thousands of years. Up until now, there was very little direct proof of this hypothesis, and samples from the surface of the mantle contained only very small quantities of carbon. Also, for the last thirty years, scientists have been unable to explain the conductivity of the mantle, which is crossed by natural electrical currents at depths of 70 to 350 kms, even though olivine, one of the main mineral components of the upper mantle, is completely isolating.

To explain these phenomena, researchers from the Institut des Sciences de la Terre d'Orléans (ISTO, CNRS / Université de Tours / Université d'Orléans) looked into liquid carbonates, one of the most stable forms of carbon within the mantle, along with graphite and diamond (1). The Masai volcano is Tanzania is the only place in the world where these carbonates can be observed. Elsewhere, the carbonates are dissolved in basalts (2) and emitted into the atmosphere in gaseous form, as CO2.

Based on lab measurements at CNRS’s CEMHTI (3), the researchers established the high conductivity of molten carbonates. Their conductivity is 1000 times higher than that of basalt, which was previously thought to be the only potential conductor in the mantle. Fabrice Gaillard (4) and his team have shown that the conductivity of the Earth’s mantle is a result of the presence of small amounts of molten carbonates between chunks of solid rock.

This work shows that the electrical characteristics of the asthenosphere, the conductive part of the upper mantle, are directly connected to the amount of carbonate in the layer. The work also points to varying carbon distribution according to the regions and depth of the mantle. The researchers calculated that the amount of carbon present as liquid carbonate directly within the asthenosphere is between 0.003 and 0.025%, which seems low but makes it possible to explain the amounts of CO2 emitted into the atmosphere by 80% of volcanoes . This nonetheless represents a reservoir of carbon integrated into the mantle which is higher than that present on the surface of the earth. These results are unmatched in helping to quantify the carbon cycle, which plays a major role in the greenhouse effect. Indeed, the CO2 emitted by volcanic activity had never before been evaluated at the source (at the level of the mantle).

The presence of molten carbonates in the asthenosphere certainly has major implications on the viscosity of this region of the mantle, which participates in the sliding of tectonic plates, a phenomenon we know little about. The behavior of liquid carbonates in solids and potential effects on viscosity remain to be studied. Everything seems to indicate that the asthenosphere contains only oxidated forms of carbon (carbonates), and not carbon in its reduced solid form (diamond). Diamond formation remains mysterious, but researchers are guessing that diamonds form from liquid carbonates at the base of the lithosphere, below the asthenosphere. Enfin, the electrical measurements of the team on liquid carbonates are of interest to the field of clean energy production, as they can be used as electrolytes in high temperature

batteries (eg. lithium carbonate).

This work was funded through a Young Researcher ANR project led by Fabrice Gaillard. He hopes to continue the work on liquid electrolytes through another ANR project and to therefore clarify these new hypotheses.

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>