Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What keeps the Earth cooking?

18.07.2011
Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth's heat flow

What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth's magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth's interior into space. Where does it come from?


A main source of the 44 trillion watts of heat that flows from the interior of the Earth is the decay of radioactive isotopes in the mantle and crust. Scientists using the KamLAND neutrino detector in Japan have measured how much heat is generated this way by capturing geoneutrinos released during radioactive decay. Credit: Lawrence Berkeley National Laboratory

Radioactive decay of uranium, thorium, and potassium in Earth's crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.)

"As a detector of geoneutrinos, KamLAND has distinct advantages," says Stuart Freedman of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), which is a major contributor to KamLAND. Freedman, a member of Berkeley Lab's Nuclear Science Division and a professor in the Department of Physics at the University of California at Berkeley, leads U.S. participation. "KamLAND was specifically designed to study antineutrinos. We are able to discriminate them from background noise and detect them with very high sensitivity."

KamLAND scientists have now published new figures for heat energy from radioactive decay in the journal Nature Geoscience. Based on the improved sensitivity of the KamLAND detector, plus several years' worth of additional data, the new estimate is not merely "consistent" with the predictions of accepted geophysical models but is precise enough to aid in refining those models.

One thing that's at least 97-percent certain is that radioactive decay supplies only about half the Earth's heat. Other sources – primordial heat left over from the planet's formation, and possibly others as well – must account for the rest.

Hunting for neutrinos from deep in the Earth

Antineutrinos are produced not only in the decay of uranium, thorium, and potassium isotopes but in a variety of others, including fission products in nuclear power reactors. In fact, reactor-produced antineutrinos were the first neutrinos to be directly detected (neutrinos and antineutrinos are distinguished from each other by the interactions in which they appear).

Because neutrinos interact only by way of the weak force – and gravity, insignificant except on the scale of the cosmos – they stream through the Earth as if it were transparent. This makes them hard to spot, but on the very rare occasions when an antineutrino collides with a proton inside the KamLAND detector – a sphere filled with a thousand metric tons of scintillating mineral oil – it produces an unmistakable double signal.

The first signal comes when the antineutrino converts the proton to a neutron plus a positron (an anti-electron), which quickly annihilates when it hits an ordinary electron – a process called inverse beta decay. The faint flash of light from the ionizing positron and the annihilation process is picked up by the more than 1,800 photomultiplier tubes within the KamLAND vessel. A couple of hundred millionths of a second later the neutron from the decay is captured by a proton in the hydrogen-rich fluid and emits a gamma ray, the second signal. This "delayed coincidence" allows antineutrino interactions to be distinguished from background events such as hits from cosmic rays penetrating the kilometer of rock that overlies the detector.

Says Freedman, "It's like looking for a spy in a crowd of people on the street. You can't pick out one spy, but if there's a second spy following the first one around, the signal is still small but it's easy to spot."

KamLAND was originally designed to detect antineutrinos from more than 50 reactors in Japan, some close and some far away, in order to study the phenomenon of neutrino oscillation. Reactors produce electron neutrinos, but as they travel they oscillate into muon neutrinos and tau neutrinos; the three "flavors" are associated with the electron and its heavier cousins.

Being surrounded by nuclear reactors means KamLAND's background events from reactor antineutrinos must also be accounted for in identifying geoneutrino events. This is done by identifying the nuclear-plant antineutrinos by their characteristic energies and other factors, such as their varying rates of production versus the steady arrival of geoneutrinos. Reactor antineutrinos are calculated and subtracted from the total. What's left are the geoneutrinos.

Tracking the heat

All models of the inner Earth depend on indirect evidence. Leading models of the kind known as bulk silicate Earth (BSE) assume that the mantle and crust contain only lithophiles ("rock-loving" elements) and the core contains only siderophiles (elements that "like to be with iron"). Thus all the heat from radioactive decay comes from the crust and mantle – about eight terawatts from uranium 238 (238U), another eight terawatts from thorium 232 (232Th), and four terawatts from potassium 40 (40K).

KamLAND's double-coincidence detection method is insensitive to the low-energy part of the geoneutrino signal from 238U and 232Th and completely insensitive to 40K antineutrinos. Other kinds of radioactive decay are also missed by the detector, but compared to uranium, thorium, and potassium are negligible contributors to Earth's heat.

Additional factors that have to be taken into account include how the radioactive elements are distributed (whether uniformly or concentrated in a "sunken layer" at the core-mantle boundary), variations due to radioactive elements in the local geology (in KamLAND's case, less than 10 percent of the expected flux), antineutrinos from fission products, and how neutrinos oscillate as they travel through the crust and mantle. Alternate theories were also considered, including the speculative idea that there may be a natural nuclear reactor somewhere deep inside the Earth, where fissile elements have accumulated and initiated a sustained fission reaction.

KamLAND detected 841 candidate antineutrino events between March of 2002 and November of 2009, of which about 730 were reactor events or other background. The rest, about 111, were from radioactive decays of uranium and thorium in the Earth. These results were combined with data from the Borexino experiment at Gran Sasso in Italy to calculate the contribution of uranium and thorium to Earth's heat production. The answer was about 20 terawatts; based on models, another three terawatts were estimated to come from other isotope decays.

This is more heat energy than the most popular BSE model suggests, but still far less than Earth's total. Says Freedman, "One thing we can say with near certainty is that radioactive decay alone is not enough to account for Earth's heat energy. Whether the rest is primordial heat or comes from some other source is an unanswered question."

Better models are likely to result when many more geoneutrino detectors are located in different places around the globe, including midocean islands where the crust is thin and local concentrations of radioactivity (not to mention nuclear reactors) are at a minimum.

Says Freedman, "This is what's called an inverse problem, where you have a lot of information but also a lot of complicated inputs and variables. Sorting those out to arrive at the best explanation among many requires multiple sources of data."

"Partial radiogenic heat model for Earth revealed by geoneutrino measurements," by the KamLAND Collaboration, Itaru Shimizu of Tohoku University, Sendai, Japan, corresponding author, is published in Nature Geoscience and is available in advanced online publication at http://www.nature.com/ngeo/index.html.

Berkeley Lab and UC Berkeley members of the KamLAND Collaboration include Thomas Banks, Thomas Bloxham, Jason Detwiler, Stuart Freedman, Brian Fujikawa, Ke Han, Richard Kadel, Hitoshi Murayama, Thomas O'Donnell, and Herbert Steiner. Besides Tohoku University, Lawrence Berkeley National Laboratory, and the University of California at Berkeley, member institutions of the KamLAND Collaboration are the Institute for the Physics and Mathematics of the Universe, Tokyo University, Kashiwa (of which Hitoshi Murayama is also the director); the University of Alabama, Tuscaloosa; the California Institute of Technology, Pasadena; Colorado State University, Fort Collins; Drexel University, Philadelphia; the University of Hawaii at Manoa; Kansas State University, Manhattan; Stanford University, Palo Alto, California; the University of Tennessee, Knoxville; Triangle Universities Nuclear Laboratory, Durham, and Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill; the University of Wisconsin at Madison, and NIKHEF (National Institute for Subatomic Physics), Amsterdam.

KamLAND is supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology and the U.S. Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>