Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's core rotating faster than rest of the planet but slower than previously believed

21.02.2011
New research gives the first accurate estimate of how much faster the Earth's core is rotating compared to the rest of the planet.

Previous research had shown that the Earth's core rotates faster than the rest of the planet. However, scientists from the University of Cambridge have discovered that earlier estimates of 1 degree every year were inaccurate and that the core is actually moving much slower than previously believed – approximately 1 degree every million years. Their findings are published today, Sunday 20 February, in the journal Nature Geoscience.

The inner core grows very slowly over time as material from the fluid outer core solidifies onto its surface. During this process, an east-west hemispherical difference in velocity is frozen into the structure of the inner core.

"The faster rotation rates are incompatible with the observed hemispheres in the inner core because it would not allow enough time for the differences to freeze into the structure," said Lauren Waszek, first author on the paper and a PhD student from the University of Cambridge's Department of Earth Sciences. "This has previously been a major problem, as the two properties cannot coexist. However, we derived the rotation rates from the evolution of the hemispherical structure, and thus our study is the first in which the hemispheres and rotation are inherently compatible."

For the research, the scientists used seismic body waves which pass through the inner core - 5200km beneath the surface of the Earth - and compared their travel time to waves which reflect from the inner core surface. The difference between the travel times of these waves provided them with the velocity structure of the uppermost 90 km of the inner core.

They then had to reconcile this information with the differences in velocity for the east and west hemispheres of the inner core. First, they observed the east and west hemispherical differences in velocity. They then constrained the two boundaries which separate the hemispheres and found that they both shifted consistently eastward with depth. Because the inner core grows over time the deeper structure is therefore older, and the shift in the boundaries between the two hemispheres results in the inner core rotating with time. The rotation rate is therefore calculated from the shift of the boundaries and the growth rate of the inner core.

Although the inner core is 5200km beneath our feet, the effect of its presence is especially important on the Earth's surface. In particular, as the inner core grows, the heat released during solidification drives convection in the fluid in the outer core. This convection generates the Earth's geomagnetic field. Without our magnetic field, the surface would not be protected from solar radiation, and life on Earth would not be able to exist.

"This result is the first observation of such a slow inner core rotation rate," said Waszek "It therefore provides a confirmed value which can now be used in simulations to model the convection of the Earth's fluid outer core, giving us additional insight into the evolution of our magnetic field."

For more information, contact:
Lauren Waszek
Mobile: +44 (0) 7766881777
Email: lw313@cam.ac.uk
Dr Arwen Deuss
Mobile: +44 (0)7913416063
Email: adf28@cam.ac.uk
Dr Jessica Irving
Jcei2@cam.ac.uk
Notes to editors:
The paper 'Reconciling the hemispherical structure of Earth's inner core with its super-rotation' is scheduled for advanced online publication in Nature Geoscience on Sunday 20 February.

Lauren Waszek | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>