Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's core rotating faster than rest of the planet but slower than previously believed

21.02.2011
New research gives the first accurate estimate of how much faster the Earth's core is rotating compared to the rest of the planet.

Previous research had shown that the Earth's core rotates faster than the rest of the planet. However, scientists from the University of Cambridge have discovered that earlier estimates of 1 degree every year were inaccurate and that the core is actually moving much slower than previously believed – approximately 1 degree every million years. Their findings are published today, Sunday 20 February, in the journal Nature Geoscience.

The inner core grows very slowly over time as material from the fluid outer core solidifies onto its surface. During this process, an east-west hemispherical difference in velocity is frozen into the structure of the inner core.

"The faster rotation rates are incompatible with the observed hemispheres in the inner core because it would not allow enough time for the differences to freeze into the structure," said Lauren Waszek, first author on the paper and a PhD student from the University of Cambridge's Department of Earth Sciences. "This has previously been a major problem, as the two properties cannot coexist. However, we derived the rotation rates from the evolution of the hemispherical structure, and thus our study is the first in which the hemispheres and rotation are inherently compatible."

For the research, the scientists used seismic body waves which pass through the inner core - 5200km beneath the surface of the Earth - and compared their travel time to waves which reflect from the inner core surface. The difference between the travel times of these waves provided them with the velocity structure of the uppermost 90 km of the inner core.

They then had to reconcile this information with the differences in velocity for the east and west hemispheres of the inner core. First, they observed the east and west hemispherical differences in velocity. They then constrained the two boundaries which separate the hemispheres and found that they both shifted consistently eastward with depth. Because the inner core grows over time the deeper structure is therefore older, and the shift in the boundaries between the two hemispheres results in the inner core rotating with time. The rotation rate is therefore calculated from the shift of the boundaries and the growth rate of the inner core.

Although the inner core is 5200km beneath our feet, the effect of its presence is especially important on the Earth's surface. In particular, as the inner core grows, the heat released during solidification drives convection in the fluid in the outer core. This convection generates the Earth's geomagnetic field. Without our magnetic field, the surface would not be protected from solar radiation, and life on Earth would not be able to exist.

"This result is the first observation of such a slow inner core rotation rate," said Waszek "It therefore provides a confirmed value which can now be used in simulations to model the convection of the Earth's fluid outer core, giving us additional insight into the evolution of our magnetic field."

For more information, contact:
Lauren Waszek
Mobile: +44 (0) 7766881777
Email: lw313@cam.ac.uk
Dr Arwen Deuss
Mobile: +44 (0)7913416063
Email: adf28@cam.ac.uk
Dr Jessica Irving
Jcei2@cam.ac.uk
Notes to editors:
The paper 'Reconciling the hemispherical structure of Earth's inner core with its super-rotation' is scheduled for advanced online publication in Nature Geoscience on Sunday 20 February.

Lauren Waszek | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>