Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's core rotating faster than rest of the planet but slower than previously believed

21.02.2011
New research gives the first accurate estimate of how much faster the Earth's core is rotating compared to the rest of the planet.

Previous research had shown that the Earth's core rotates faster than the rest of the planet. However, scientists from the University of Cambridge have discovered that earlier estimates of 1 degree every year were inaccurate and that the core is actually moving much slower than previously believed – approximately 1 degree every million years. Their findings are published today, Sunday 20 February, in the journal Nature Geoscience.

The inner core grows very slowly over time as material from the fluid outer core solidifies onto its surface. During this process, an east-west hemispherical difference in velocity is frozen into the structure of the inner core.

"The faster rotation rates are incompatible with the observed hemispheres in the inner core because it would not allow enough time for the differences to freeze into the structure," said Lauren Waszek, first author on the paper and a PhD student from the University of Cambridge's Department of Earth Sciences. "This has previously been a major problem, as the two properties cannot coexist. However, we derived the rotation rates from the evolution of the hemispherical structure, and thus our study is the first in which the hemispheres and rotation are inherently compatible."

For the research, the scientists used seismic body waves which pass through the inner core - 5200km beneath the surface of the Earth - and compared their travel time to waves which reflect from the inner core surface. The difference between the travel times of these waves provided them with the velocity structure of the uppermost 90 km of the inner core.

They then had to reconcile this information with the differences in velocity for the east and west hemispheres of the inner core. First, they observed the east and west hemispherical differences in velocity. They then constrained the two boundaries which separate the hemispheres and found that they both shifted consistently eastward with depth. Because the inner core grows over time the deeper structure is therefore older, and the shift in the boundaries between the two hemispheres results in the inner core rotating with time. The rotation rate is therefore calculated from the shift of the boundaries and the growth rate of the inner core.

Although the inner core is 5200km beneath our feet, the effect of its presence is especially important on the Earth's surface. In particular, as the inner core grows, the heat released during solidification drives convection in the fluid in the outer core. This convection generates the Earth's geomagnetic field. Without our magnetic field, the surface would not be protected from solar radiation, and life on Earth would not be able to exist.

"This result is the first observation of such a slow inner core rotation rate," said Waszek "It therefore provides a confirmed value which can now be used in simulations to model the convection of the Earth's fluid outer core, giving us additional insight into the evolution of our magnetic field."

For more information, contact:
Lauren Waszek
Mobile: +44 (0) 7766881777
Email: lw313@cam.ac.uk
Dr Arwen Deuss
Mobile: +44 (0)7913416063
Email: adf28@cam.ac.uk
Dr Jessica Irving
Jcei2@cam.ac.uk
Notes to editors:
The paper 'Reconciling the hemispherical structure of Earth's inner core with its super-rotation' is scheduled for advanced online publication in Nature Geoscience on Sunday 20 February.

Lauren Waszek | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>