In a paper published in the latest issue of Current Anthropology, archaeologist John Shea (Stony Brook University) shows they were not.
The problem, Shea argues, is that archaeologists have been focusing on the wrong measurement of early human behavior. Archaeologists have been searching for evidence of "behavioral modernity", a quality supposedly unique to Homo sapiens, when they ought to have been investigating "behavioral variability," a quantitative dimension to the behavior of all living things.
Human origins research began in Europe, and the European Upper Paleolithic archaeological record has long been the standard against which the behavior of earlier and non-European humans is compared. During the Upper Paleolithic (45,000-12,000 years ago), Homo sapiens fossils first appear in Europe together with complex stone tool technology, carved bone tools, complex projectile weapons, advanced techniques for using fire, cave art, beads and other personal adornments. Similar behaviors are either universal or very nearly so among recent humans, and thus, archaeologists cite evidence for these behaviors as proof of human behavioral modernity.
Yet, the oldest Homo sapiens fossils occur between 100,000-200,000 years ago in Africa and southern Asia and in contexts lacking clear and consistent evidence for such behavioral modernity. For decades anthropologists contrasted these earlier "archaic" African and Asian humans with their "behaviorally-modern" Upper Paleolithic counterparts, explaining the differences between them in terms of a single "Human Revolution" that fundamentally changed human biology and behavior. Archaeologists disagree about the causes, timing, pace, and characteristics of this revolution, but there is a consensus that the behavior of the earliest Homo sapiens was significantly that that of more-recent "modern" humans.
Shea tested the hypothesis that there were differences in behavioral variability between earlier and later Homo sapiens using stone tool evidence dating to between 250,000- 6000 years ago in eastern Africa. This region features the longest continuous archaeological record of Homo sapiens behavior. A systematic comparison of variability in stone tool making strategies over the last quarter-million years shows no single behavioral revolution in our species' evolutionary history. Instead, the evidence shows wide variability in Homo sapiens toolmaking strategies from the earliest times onwards. Particular changes in stone tool technology can be explained in terms of the varying costs and benefits of different toolmaking strategies, such as greater needs for cutting edge or more efficiently-transportable and functionally-versatile tools. One does not need to invoke a "human revolution" to account for these changes, they are explicable in terms of well-understood principles of behavioral ecology.
This study has important implications for archaeological research on human origins. Shea argues that comparing the behavior of our most ancient ancestors to Upper Paleolithic Europeans holistically and ranking them in terms of their "behavioral modernity" is a waste of time. There are no such things as modern humans, Shea argues, just Homo sapiens populations with a wide range of behavioral variability. Whether this range is significantly different from that of earlier and other hominin species remains to be discovered. However, the best way to advance our understanding of human behavior is by researching the sources of behavioral variability in particular adaptive strategies.
John Shea, "Homo sapiens is as Homo sapiens was: Behavioral variability vs. 'behavioral modernity' in Paleolithic archaeology." Current Anthropology 54:1 (February 2011).
Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu
Further reports about: > Current Anthropology > Homo sapiens > Homo sapiens fossils > Paleolithic > anthropology > behavioral modernity > monosyllables
Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Physics and Astronomy
On the shape of the 'petal' for the dissipation curve
23.04.2018 | Physics and Astronomy
Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Trade Fair News