Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest Known Bug-Repellant Plant Bedding Found at South African Rock Shelter

13.12.2011
Evidence suggests herbal medicines used 77,000 years ago

What were the daily lives of modern humans like more than 50,000 years ago?


Plant bedding was found at the Sibudu rock shelter in Northern KwaZulu-Natal, South Africa. Researchers found at least 15 layers of sediment containing plant bedding, dated between 77,000 and 38,000 years ago. The site has been undergoing digging since 1998. Credit: Lyn Wadley, Wits University

Rare finds such as early ornaments, cave drawings and Middle Stone Age engravings are the subjects of a good deal of anthropological study and they provide clues. But in today's journal Science, an international team of researchers report another find that could give additional insight. What's more, it could place the use of herbal medicines much earlier than previously known.

Lyn Wadley of the University of the Witwatersrand, in Johannesburg, South Africa, along with a team of archeologists, botanists and paleobotonists, recently dug up and analyzed the earliest known plant bedding at Sibudu, a South African rock shelter in Northern KwaZulu-Natal.

The plant bedding is 77,000 years old and 50,000 years older than the earliest reports of preserved bedding. It provides an intriguing look at the behavioral practices of early modern humans in Southern Africa.

"Domestic activities, like preparing and destroying plant bedding, can provide important information," said Wadley, an honorary professor at the Institute for Human Evolution at Witwatersrand.

Plant bedding is not as well known as other anthropological artifacts, but Wadley says it has the ability to provide information about changing settlement patterns and even demography.

Archeologists refer to plant bedding as a type of floor preparation constructed from plant layers. The discoveries in Sibudu suggest plant bedding there probably was used as a surface for working and sleeping, similar to how it is used in the region today.

At Sibudu, which has been undergoing digging since 1998, researchers found at least 15 layers of sediment containing plant bedding, dated between 77,000 and 38,000 years ago.

The bedding consists of centimeter-thick layers of compacted stems and leaves of sedges and rushes, extending over at least one square meter and up to three square meters of the excavated area. Some of the fossilized leaves bear perfectly preserved anatomical details like vein patterns in leaf blades and pores found in leaf and stem epidermises, called venation and stomata.

"Since leaves can simply be used to add comfort to sedge bedding we were even more surprised when we discovered that the leaves used have insecticidal properties," said Wadley. She surmised they probably were used to repel mosquitoes from the site, which is near the UThongathi River.

"The use of plants and other biological organisms and substances for medicine and other health-related uses is a fascinating aspect of modern human cultures," said Carolyn Ehardt, program director for biological anthropology at the National Science Foundation, which partially funded the research. "Anthropologists have been studying human ethnomedical and ethnobiological systems extensively, aiding in the discovery of new drugs and other therapies. It is quite interesting to gain this level of historical depth to the apparent recognition by these people of the beneficial properties in the local flora."

Marion Bamford, a botanist with the Bernard Price Institute for Palaeontological Research at Witwatersrand, identified the sedges as belonging to a plant called Cryptocarya woodii, or River Wild-quince. C. woodii contains chemicals that have insecticidal and larvicidal properties.

The chemicals have different effects on different insects. "For some insects there is a ‘knock-down' effect," said Wadley. "Others are repelled and the breeding rate is interfered with amongst some insects."

C. woodii is in the same family as the Bay leaf, which has culinary use, but is also suitable for storing in grains to repel insects that would eat them.

The research included examining blocks of sediment from the site that had been undisturbed for thousands of years to determine their contents. Paul Goldberg and Francesco Berna, National Science Foundation-supported archaeological scientists at Boston University, analyzed thin sections of sediment that preserved the original contextual integrity of the deposits at the millimeter to centimeter scale.

Their micromorphological analysis found evidence of individual human activities, including the construction of hearths and bedding and the maintenance of occupational surfaces through the sweep out of hearths.

"I don't think we would have had this confirmation, or at least impetus, if we hadn't had done the original thin section work," said Goldberg. "We were able to recognize several different types of deposits that are only centimeters thick. Among them were layers composed mainly of phytoliths, some of which were clearly sedges," he said.

Phytoliths are minute particles formed of mineral matter by a living plant and fossilized in rock. In this case, researchers found fossilized sedge particles.

"We could also observe in thin section some pieces of clay that was likely attached to the roots of the sedges from where they were taken down at the stream below the site," said Goldberg.

In addition, the team's analysis confirmed the repeated burning of plant bedding. Most likely, "the bedding was burnt to rid it of pests--insects and perhaps rodents--and to clean up decaying organic material," said Wadley.

"Since sites are usually simply abandoned when they become fusty, the implication is that people wanted to reuse Sibudu regularly, and more regularly than would be allowed by natural processes of decay to clean the site. Burning was probably a more effective way to get rid of insects than the use of herbs."

According to Wadley, the discovery is particularly well timed, since future work at the site may be in jeopardy. Local officials plan to construct a large housing tract near the Sibudu rock shelter that Wadley says would irreparably damage the site and prevent future excavation. She and her colleagues hope this discovery will emphasize the importance of Sibudu as an irreplaceable cultural resource for South Africa and the rest of the world.

Christine Sievers with the School of Geography, Archaeology and Environmental Studies at Witwatersrand and Christopher Miller with the Institute for Archaeological Sciences at the University of Tübingen in Germany also contributed to this research.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Program Contacts
John E. Yellen, NSF (703) 292-8759 jyellen@nsf.gov
Principal Investigators
Lyn Wadley, University of the Witwatersran 014 755 3506/ 083 60 Lyn.Wadley@wits.ac.za
Co-Investigators
Paul Goldberg, Boston University (617) 358-1666 paulberg@bu.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=122526&org=NSF&from=news

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>