Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do dust particles curb climate change?

08.10.2009
A knowledge gap exists in the area of climate research: for decades, scientists have been asking themselves whether, and to what extent man-made aerosols, that is, dust particles suspended in the atmosphere, enlarge the cloud cover and thus curb climate warming. Research has made little or no progress on this issue.

Two scientists from the Max Planck Institute for Meteorology in Hamburg (MPI-M) and the American National Oceanic and Atmospheric Administration (NOAA) report in the journal Nature that the interaction between aerosols, clouds and precipitation is strongly dependent on factors that have not been adequately researched up to now. They urge the adoption of a research concept that will close this gap in the knowledge. (Nature, October 1st, 2009)


Greenhouse gases that heat up the earth's atmosphere have their adversaries: dust particles suspended in the atmosphere which are known as aerosols. They arise naturally, for example when wind blows up desert dust, and through human activities. A large proportion of the man-made aerosols arise from sulfur dioxides that are generated, in turn, by the combustion of fossil fuels.

The aerosols are viewed as climate coolers, which compensate in part for the heating up of the earth by greenhouse gases. Climate researchers imagine the workings of this cooling mechanism in very simple terms: when aerosols penetrate clouds, they attract water molecules and therefore act as condensation seeds for drops of water. The more aerosol particles suspended in the cloud, the more drops of water are formed. When man-made dust particles join the natural ones, the number of drops increases. As a result, the average size of the drops decreases. Because smaller drops do not fall to the ground, the aerosols prevent the cloud from raining out and extend its lifetime. Consequently, the cloud cover over the earth's surface increases. Because clouds reflect the solar radiation and throw it back into space, less heat collects in the atmosphere than when the sky is clear. Climate researchers refer to this mechanism as the "cloud lifetime effect".

To date, however, it has not been possible to quantify the influence of the cloud lifetime effect on climate. The estimates vary hugely and range from no influence whatsoever to a cooling effect that is sufficient to more than compensate for the heating effect of carbon dioxide.

According to Bjorn Stevens from the MPI-M and Graham Feingold from the Earth System Research Laboratory at NOAA in Washington D.C the enormous uncertainty surrounding this phenomenon is indicative of the fact that the explanation of the cooling mechanism generated by aerosols is oversimplified. The two cloud researchers have analyzed the specialist literature published on this topic since the 1970s. In their survey of the literature they encountered observations that disagree with the cloud lifetime effect: for example, a field study carried out a few years ago found that clouds in the Trade Wind region rain out more quickly rather than more slowly in the presence of virtually opaque aerosols.

On the completion of their analysis of the literature, Stevens and Feingold came to the following conclusion: "Clouds react to aerosols in a very complex way and the reaction is strongly dependent on the type and state of the cloud," says Stevens. Therefore the aerosol problem is a cloud problem. "We climate researchers must focus more on cloud systems and understand them better," he stresses.

As the researchers write, processes in the clouds that counteract or even negate the influence of the aerosol particles have not been taken into account up to now. One example: when a cumulus cloud comes into contact with aerosols, it does not rain out. However, this has certain consequences: the fluid rises and evaporates above the cloud. The air that lies above the cloud cools down and becomes susceptible to the upward extension of the cumulus cloud. Higher cumulus clouds rain out more easily than lower ones. This is what causes precipitation. Therefore, in such situations the aerosol does not prevent the cloud from raining out.

Stevens and Feingold believe that due to such buffer mechanisms the cooling effect of the aerosols is likely to be minimal. They admit, however, that the cloud lifetime effect is not unsuitable per se as a way of explaining the processes triggered by aerosols in the clouds. "All cloud types and states cannot, however, be lumped together," says Stevens. He calls for rethinking aerosol research and makes a comparison with cancer research: "People used to think that cancer was based on a single mechanism. Today, it is known that each type of cancer must be researched individually," says the scientist.

According to Stevens and Feingold, research must first identify the cloud systems on which aerosols have the greatest influence. They suggest starting with particularly common types of cloud, for example flat cumulus clouds over the oceans (Trade Wind cumuli), which cover 40 percent of the global seas.

A research project to be undertaken jointly by the Max Planck Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrology in Miami will make a start on this. The two-year empirical field study will commence on the Caribbean island of Barbados, which is located in the Trade Wind region, in 2010. The researchers will install remote sensing instruments on the island's windward side that will focus on the clouds coming from the open ocean. The land measurements will be complemented by measurements taken in the clouds themselves by HALO, the German research aircraft. The data from this measurement campaign should help the scientists to reach a better understanding of the relationships between cloud cover, precipitation, local meteorological conditions and aerosols.

Original work:

Bjorn Stevens, Graham Feingold
Untangling aerosol effects on clouds and precipitation in a buffered system
Nature, October 1st 2009, Volume 461, pages 607 - 613

Dr. Annette Kirk | EurekAlert!
Further information:
http://www.halo.dlr.de/
http://www.mpg.de

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>