Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham scientist explores Sichuan fault

14.08.2008
Durham University expert, Alex Densmore, is to explore the fault lines that caused the May 12th earthquake in China that killed 69,000 people.

Dr. Densmore, Director of Hazards Research at the Institute of Hazard and Risk Research at Durham University, is the first UK scientist to visit the region to research the faults and the effects and causes of the Sichuan earthquake since the disaster.

Dr. Densmore said: “We’ll be looking at the effects of the earthquake on the ground and for evidence of what actually happened during the earthquake. We’ll be looking very closely at how the tectonic blocks actually moved in relation to each other.

“Much of what actually happens during earthquakes is difficult to view because it occurs deep below the surface. By looking at the way in which roads, pipelines, rivers and other man-made markers are affected, we can map out how the earth moved, what faults were responsible, and what kind of activity we might expect in future events.”

Dr. Densmore leaves for China on Wednesday 13th August and will be working alongside colleagues from Shell UK Ltd, the Chengdu University of Technology, and the Seismological Bureau of Sichuan Province. The research team will study:

1/ which faults were active during the earthquake and what actually happened;
2/ how the tectonic blocks are moving relative to each other in this part of the India-Asia collision; and

3/ what is expected to happen in the future the next time an earthquake happens

It is thought that two main faults were involved in the May 12 earthquake, out of four or five active faults in that part of China. At least 22,000 aftershocks, measuring up to 6.9 in magnitude, have been monitored in the quake zone, according to the China Earthquake Administration.

Dr. Densmore said: “Aftershocks are expected after every large earthquake and this has been no exception. Earthquakes release stress where they occur, but they also cause increased stress in the surrounding rock, and this additional pressure has to be released. Peak aftershock activity is generally in the first few days after the main quake, and the number and size of aftershocks decreases rapidly after that.”

18,000 people are still officially missing and a further 374,000 people have been classified as injured following the Sichuan disaster. Beichuan town has been completely evacuated following the earthquake. The Chinese authorities are looking at building a whole new town for the former residents.

Dr. Densmore said: “We are conscious of being as sensitive as possible while working in this area. There is still a lot of recovery work going on and there are obvious long-term infrastructural problems. We hope to be able to visit the town of Beichuan which was decimated by the earthquake, but this will depend very much on the local authorities. We’re very thankful to the Sichuan provincial government for granting us access to the earthquake zone at such a critical time.

The location of the active faults is crucial. We want to see if the faults that we’ve previously mapped were activated during the earthquake, or if the quake occurred along a new set of faults. Knowing where the active faults lie, and how much they are likely to move in future events, can help the Chinese authorities in planning new buildings and towns to reduce the likelihood of future casualties.“

Dr. Alex Densmore’s research in China is funded by The Natural Environment Research Council (NERC).

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk

Further reports about: Earthquake pipelines quake zone tectonic blocks

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>