Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duck-billed dinosaurs endured long, dark polar winters

12.04.2012
Duck-billed dinosaurs that lived within Arctic latitudes approximately 70 million years ago likely endured long, dark polar winters instead of migrating to more southern latitudes, a recent study by researchers from the University of Cape Town, Museum of Nature and Science in Dallas and Temple University has found.

The researchers published their findings, “Hadrosaurs Were Perennial Polar Residents,” in the April issue of the journal The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. The study was funded through a grant from the National Science Foundation.

Anthony Fiorillo, a paleontologist at the Museum of Nature and Science, excavated Cretaceous Period fossils along Alaska’s North Slope. Most of the bones belonged to Edmontosaurus, a duck-billed herbivore, but some others such as the horned dinosaur Pachyrhinosaurus were also found.

Fiorillo hypothesized that the microscopic structures of the dinosaurs’ bones could show how they lived in polar regions. He enlisted the help of Allison Tumarkin-Deratzian, an assistant professor of earth and environmental science at Temple, who had both expertise and the facilities to create and analyze thin layers of the dinosaurs’ bone microstructure.

Another researcher, Anusuya Chinsamy-Turan, a professor of zoology at the University of Cape Town, was independently pursuing the same analysis of Alaskan Edmontosaurus fossils. When the research groups discovered the similarities of their studies, they decided to collaborate and combine their data sets to provide a larger sampling. Half of the samples were tested and analyzed at Temple; the rest were done in South Africa.

“The bone microstructure of these dinosaurs is actually a record of how these animals were growing throughout their lives,” said Tumarkin-Deratzian. “It is almost similar to looking at tree rings.”

What the researchers found was bands of fast growth and slower growth that seemed to indicate a pattern.

“What we found was that periodically, throughout their life, these dinosaurs were switching how fast they were growing,” said Tumarkin-Deratzian. “We interpreted this as potentially a seasonal pattern because we know in modern animals these types of shifts can be induced by changes in nutrition. But that shift is often driven by changes in seasonality.”

The researchers questioned what was causing the dinosaurs to be under stress at certain times during the year: staying up in the polar region and dealing with reduced nutrition during the winter or migrating to and from lower latitudes during the winter.

They did bone microstructure analysis on similar duck-billed dinosaur fossils found in southern Alberta, Canada, but didn’t see similar stress patterns, implying that those dinosaurs did not experience regular periodic seasonal stresses. “We had two sets of animals that were growing differently,” said Tumarkin-Deratzian.

Since the Alaska fossils had all been preserved in the same sedimentary horizon, Fiorillo examined the geology of the bonebeds in Alaska where the samples were excavated and discovered that these dinosaurs had been preserved in flood deposits.

“They are very similar to modern flood deposits that happen in Alaska in the spring when you get spring melt water coming off the Brooks Mountain Range,” said Fiorillo. “The rivers flood down the Northern Slope and animals get caught in these floods, particularly younger animals, which appear to be what happened to these dinosaurs.

“So we know they were there at the end of the dark winter period, because if they were migrating up from the lower latitudes, they wouldn’t have been there during these floods,” he said.

“It is fascinating to realize how much of information is locked in the bone microstructure of fossil bones,” said Chinsamy-Turan. “It’s incredible to realize that we can also tell from these 70 million-year-old bones that the majority of the polar hadrosaurs died just after the winter season.”

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple’s Office of University Communications at pmoretz@temple.edu

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu
http://news.temple.edu/news/2012-04-10/duck-billed-dinosaurs-endured-long-dark-polar-winters

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>