Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dry lake reveals evidence of Southwestern ‘megadroughts’

01.03.2011
Cooling trend could be on the way unless thwarted by greenhouse gasses

There’s an old saying that if you don't like the weather in New Mexico, wait five minutes. Maybe it should be amended to 10,000 years, according to new research.

In a letter published recently in the journal Nature, Los Alamos National Laboratory researchers and an international team of scientists report that the Southwest region of the United States undergoes "megadroughts"—warmer, more arid periods lasting hundreds of years or longer. More significantly, a portion of the research indicates that an ancient period of warming may be analogous to natural present-day climate conditions. If so, a cooler, wetter period may be in store for the region, unless it is thwarted by increased concentrations of greenhouse gasses in the atmosphere that could warm the planet.

Using a long core of sediments obtained in 2004 from beneath a dry lakebed located on the Valles Caldera National Preserve—an 86,000-acre grassland located on the site of a dormant prehistoric volcano about 20 miles west of Los Alamos—the researchers were able to peer back in time into the climate as it existed between 360,000 and 550,000 years ago. Layers in the 260-foot-long sediment core were easily distinguishable, and were bounded by distinct layers of volcanic ash that allowed for very accurate dating. Researchers looked at chemical constituents trapped within the layers as well as plant and pollen debris to characterize the climate conditions of the time.

The sediment layers from beneath the South Mountain Lake covered two "interglacial" periods. Such periods are significant because they represent a time between ice ages when warmer temperatures mimicked present-day temperatures. The ancient interglacial period, known as Marine Isotope Stage 11—MIS 11 for short—lasted about 50,000 years and included, among several periods of climatic variation, one definitive megadrought period followed by a cooler period. Prior to the study, detailed data about MIS 11 had been scarce because most of the information was gathered from Antarctic ice cores or marine sediments. The terrestrial record obtained beneath South Mountain Lake revealed a bounty of information that nicely details the ancient climate.

The oldest warm period in MIS 11 appears somewhat analogous to the present-day Holocene interglacial period, which has been ongoing for about the past 10,000 years. During MIS 11, the ancient climate warmed dramatically by about 14 degrees Fahrenheit. This warming in the wake of a preceding period of cold gave rise to an abundance of plant life and seasonally wet conditions. As warming continued, grasses and shrubs died off and lakes dried up. The ensuing drought lasted thousands of years before ending abruptly with a cooler, wetter period.

The research could indicate that the Southwest, having been through a present-day drought period that included the historic Dust Bowl, might be due for a change unless increased concentrations of greenhouse gasses interfere.

"Results from this study have implications for the development of models that could predict future megadroughts and other climate conditions in the Southwestern United States," said Jeffrey Heikoop, leader of the Los Alamos study team.

Peter Fawcett of the University of New Mexico was principal researcher for the study. Other LANL team members included Julianna Fessenden-Rahn, Giday WoldeGabriel, Malu Cisneros-Dozal (now at the University of Glasgow), and retired LANL scientist Fraser Goff. The Los Alamos research team received funding in part from the Institute of Geophysics and Planetary Physics.

Other institutions involved with the research include the University of Minnesota Duluth; University of Western Australia; Curtin University of Technology, Western Australia; Royal Netherlands Institute for Sea Research; Brown University; Northern Arizona University; and the U.S. Geological Survey.

The Nature letter can be found here: http://www.nature.com/nature/journal/v470/n7335/full/nature09839.html

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LANL news media contact: James E. Rickman, (505) 665-9203, jamesr@lanl.gov

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>