Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drop in carbon dioxide levels led to polar ice sheet, study finds

A drop in carbon dioxide appears to be the driving force that led to the Antarctic ice sheet's formation, according to a recent study led by scientists at Yale and Purdue universities of molecules from ancient algae found in deep-sea core samples.

The key role of the greenhouse gas in one of the biggest climate events in Earth's history supports carbon dioxide's importance in past climate change and implicates it as a significant force in present and future climate.

The team pinpointed a threshold for low levels of carbon dioxide below which an ice sheet forms in the South Pole, but how much the greenhouse gas must increase before the ice sheet melts - which is the relevant question for the future - remains a mystery.

Matthew Huber, a professor of earth and atmospheric sciences at Purdue, said roughly a 40 percent decrease in carbon dioxide occurred prior to and during the rapid formation of a mile-thick ice sheet over the Antarctic approximately 34 million years ago.

A paper detailing the results was published Thursday (Dec. 1) in the journal Science.

"The evidence falls in line with what we would expect if carbon dioxide is the main dial that governs global climate; if we crank it up or down there are dramatic changes," Huber said. "We went from a warm world without ice to a cooler world with an ice sheet overnight, in geologic terms, because of fluctuations in carbon dioxide levels."

For 100 million years prior to the cooling, which occurred at the end of the Eocene epoch, Earth was warm and wet. Mammals and even reptiles and amphibians inhabited the North and South poles, which then had subtropical climates. Then, over a span of about 100,000 years, temperatures fell dramatically, many species of animals became extinct, ice covered Antarctica and sea levels fell as the Oligocene epoch began.

Mark Pagani, the Yale geochemist who led the study, said polar ice sheets and sea ice exert a strong control on modern climate, influencing the global circulation of warm and cold air masses, precipitation patterns and wind strengths, and regulating global and regional temperature variability.

"The onset of Antarctic ice is the mother of all climate 'tipping points,'" he said. "Recognizing the primary role carbon dioxide change played in altering global climate is a fundamentally important observation."

There has been much scientific discussion about this sudden cooling, but until now there has not been much evidence and solid data to tell what happened, Huber said.

The team found the tipping point in atmospheric carbon dioxide levels for cooling that initiates ice sheet formation is about 600 parts per million. Prior to the levels dropping this low, it was too warm for the ice sheet to form. At the Earth's current level of around 390 parts per million, the environment is such that an ice sheet remains, but carbon dioxide levels and temperatures are increasing. The world will likely reach levels between 550 and 1,000 parts per million by 2100. Melting an ice sheet is a different process than its initiation, and it is not known what level would cause the ice sheet to melt away completely, Huber said.

"The system is not linear and there may be a different threshold for melting the ice sheet, but if we continue on our current path of warming we will eventually reach that tipping point," he said. "Of course after we cross that threshold it will still take many thousands of years to melt an ice sheet."

What drove the rise and fall in carbon dioxide levels during the Eocene and Oligocene is not known.

The team studied geochemical remnants of ancient algae from seabed cores collected by drilling in deep-ocean sediments and crusts as part of the National Science Foundation's Integrated Ocean Drilling program. The biochemical molecules present in algae vary depending on the temperature, nutrients and amount of dissolved carbon dioxide present in the ocean water. These molecules are well preserved even after many millions of years and can be used to reconstruct the key environmental variables at the time, including carbon dioxide levels in the atmosphere, Pagani said.

Samples from two sites in the tropical Atlantic Ocean were the main focus of this study because this area was stable at that point in Earth's history and had little upwelling, which brings carbon dioxide from the ocean floor to the surface and could skew measurements of atmospheric carbon dioxide, Huber said.

In re-evaluating previous estimates of atmospheric carbon dioxide levels using deep-sea core samples, the team found that continuous data from a stable area of the ocean is necessary for accurate results. Data generated from a mix of sites throughout the world's oceans caused inaccuracies due to variations in the nutrients present in different locations. This explained conflicting results from earlier papers based on the deep-sea samples that suggested carbon dioxide increased during the formation of the ice sheet, he said.

Constraints on temperature and nutrient concentrations were achieved through modeling of past circulation, temperature and nutrient distributions performed by Huber and Willem Sijp at the University of New South Wales in Australia. The collaboration built on Huber's previous work using the National Center for Atmospheric Research Community Climate System Model 3, one of the same models used to predict future climates, and used the UVic Earth System Climate Model developed at the University of Victoria, British Columbia.

"The models got it just about right and provided results that matched the information obtained from the core samples," he said. "This was an important validation of the models. If they are able to produce results that match the past, then we can have more confidence in their ability to predict future scenarios."

In addition to Huber, Pagani and Sijp, paper co-authors include Zhonghui Liu of the University of Hong Kong, Steven Bohaty of the University of Southampton in England, Jorijntje Henderiks of Uppsala University in Sweden, Srinath Krishnan of Yale, and Robert DeConto of the University of Massachusetts-Amherst.

The National Science Foundation, Natural Environment Research Council, Royal Swedish Academy and Yale Department of Geology funded this work.

In 2004 the team used evidence from deep-sea core samples to challenge the longstanding theory that the ice sheet developed because of a shift from warm to cool ocean currents millions of years ago. The team found that a cold current, not the warm one that had been theorized, was flowing past the Antarctic coast for millions of years before the ice sheet developed.

Huber next plans to investigate the impact of an ice sheet on climate.

"It seems that the polar ice sheet shaped our modern climate, but we don't have much hard data on the specifics of how," he said. "It is important to know by how much it cools the planet and how much warmer the planet would get without an ice sheet."

Writer: Elizabeth K. Gardner, 765-494-2081,

Sources: Matthew Huber, 765-494-9531,

Mark Pagani, 203-432-6275,

Related website:

Matthew Huber Climate Dynamics Prediction Laboratory:

Related news releases:

Antarctic iced over when greenhouse gases - not ocean currents - shifted, study suggests:

Prehistoric global cooling caused by CO2, research finds:

Abstract on the research in this release is available at:

Elizabeth K. Gardner | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>