Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drop in carbon dioxide levels led to polar ice sheet, study finds

02.12.2011
A drop in carbon dioxide appears to be the driving force that led to the Antarctic ice sheet's formation, according to a recent study led by scientists at Yale and Purdue universities of molecules from ancient algae found in deep-sea core samples.

The key role of the greenhouse gas in one of the biggest climate events in Earth's history supports carbon dioxide's importance in past climate change and implicates it as a significant force in present and future climate.

The team pinpointed a threshold for low levels of carbon dioxide below which an ice sheet forms in the South Pole, but how much the greenhouse gas must increase before the ice sheet melts - which is the relevant question for the future - remains a mystery.

Matthew Huber, a professor of earth and atmospheric sciences at Purdue, said roughly a 40 percent decrease in carbon dioxide occurred prior to and during the rapid formation of a mile-thick ice sheet over the Antarctic approximately 34 million years ago.

A paper detailing the results was published Thursday (Dec. 1) in the journal Science.

"The evidence falls in line with what we would expect if carbon dioxide is the main dial that governs global climate; if we crank it up or down there are dramatic changes," Huber said. "We went from a warm world without ice to a cooler world with an ice sheet overnight, in geologic terms, because of fluctuations in carbon dioxide levels."

For 100 million years prior to the cooling, which occurred at the end of the Eocene epoch, Earth was warm and wet. Mammals and even reptiles and amphibians inhabited the North and South poles, which then had subtropical climates. Then, over a span of about 100,000 years, temperatures fell dramatically, many species of animals became extinct, ice covered Antarctica and sea levels fell as the Oligocene epoch began.

Mark Pagani, the Yale geochemist who led the study, said polar ice sheets and sea ice exert a strong control on modern climate, influencing the global circulation of warm and cold air masses, precipitation patterns and wind strengths, and regulating global and regional temperature variability.

"The onset of Antarctic ice is the mother of all climate 'tipping points,'" he said. "Recognizing the primary role carbon dioxide change played in altering global climate is a fundamentally important observation."

There has been much scientific discussion about this sudden cooling, but until now there has not been much evidence and solid data to tell what happened, Huber said.

The team found the tipping point in atmospheric carbon dioxide levels for cooling that initiates ice sheet formation is about 600 parts per million. Prior to the levels dropping this low, it was too warm for the ice sheet to form. At the Earth's current level of around 390 parts per million, the environment is such that an ice sheet remains, but carbon dioxide levels and temperatures are increasing. The world will likely reach levels between 550 and 1,000 parts per million by 2100. Melting an ice sheet is a different process than its initiation, and it is not known what level would cause the ice sheet to melt away completely, Huber said.

"The system is not linear and there may be a different threshold for melting the ice sheet, but if we continue on our current path of warming we will eventually reach that tipping point," he said. "Of course after we cross that threshold it will still take many thousands of years to melt an ice sheet."

What drove the rise and fall in carbon dioxide levels during the Eocene and Oligocene is not known.

The team studied geochemical remnants of ancient algae from seabed cores collected by drilling in deep-ocean sediments and crusts as part of the National Science Foundation's Integrated Ocean Drilling program. The biochemical molecules present in algae vary depending on the temperature, nutrients and amount of dissolved carbon dioxide present in the ocean water. These molecules are well preserved even after many millions of years and can be used to reconstruct the key environmental variables at the time, including carbon dioxide levels in the atmosphere, Pagani said.

Samples from two sites in the tropical Atlantic Ocean were the main focus of this study because this area was stable at that point in Earth's history and had little upwelling, which brings carbon dioxide from the ocean floor to the surface and could skew measurements of atmospheric carbon dioxide, Huber said.

In re-evaluating previous estimates of atmospheric carbon dioxide levels using deep-sea core samples, the team found that continuous data from a stable area of the ocean is necessary for accurate results. Data generated from a mix of sites throughout the world's oceans caused inaccuracies due to variations in the nutrients present in different locations. This explained conflicting results from earlier papers based on the deep-sea samples that suggested carbon dioxide increased during the formation of the ice sheet, he said.

Constraints on temperature and nutrient concentrations were achieved through modeling of past circulation, temperature and nutrient distributions performed by Huber and Willem Sijp at the University of New South Wales in Australia. The collaboration built on Huber's previous work using the National Center for Atmospheric Research Community Climate System Model 3, one of the same models used to predict future climates, and used the UVic Earth System Climate Model developed at the University of Victoria, British Columbia.

"The models got it just about right and provided results that matched the information obtained from the core samples," he said. "This was an important validation of the models. If they are able to produce results that match the past, then we can have more confidence in their ability to predict future scenarios."

In addition to Huber, Pagani and Sijp, paper co-authors include Zhonghui Liu of the University of Hong Kong, Steven Bohaty of the University of Southampton in England, Jorijntje Henderiks of Uppsala University in Sweden, Srinath Krishnan of Yale, and Robert DeConto of the University of Massachusetts-Amherst.

The National Science Foundation, Natural Environment Research Council, Royal Swedish Academy and Yale Department of Geology funded this work.

In 2004 the team used evidence from deep-sea core samples to challenge the longstanding theory that the ice sheet developed because of a shift from warm to cool ocean currents millions of years ago. The team found that a cold current, not the warm one that had been theorized, was flowing past the Antarctic coast for millions of years before the ice sheet developed.

Huber next plans to investigate the impact of an ice sheet on climate.

"It seems that the polar ice sheet shaped our modern climate, but we don't have much hard data on the specifics of how," he said. "It is important to know by how much it cools the planet and how much warmer the planet would get without an ice sheet."

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Sources: Matthew Huber, 765-494-9531, huberm@purdue.edu

Mark Pagani, 203-432-6275, mark.pagani@yale.edu

Related website:

Matthew Huber Climate Dynamics Prediction Laboratory: http://web.ics.purdue.edu/~huberm/Matthew_Hubers_Climate_Dynamics_Prediction_Laboratory/CDPL.html

Related news releases:

Antarctic iced over when greenhouse gases - not ocean currents - shifted, study suggests: http://www.purdue.edu/uns/html4ever/2004/041227.Huber.Antarctica.html

Prehistoric global cooling caused by CO2, research finds: http://www.purdue.edu/uns/x/2009a/090226HuberPete.html

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/111201HuberGlaciation.html

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>