Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Douglas-fir, geoducks make strange bedfellows in studying climate change

03.08.2009
Scientists are comparing annual growth rings of the Pacific Northwest's largest bivalve and its most iconic tree for clues to how living organisms may have responded to changes in climate.

Analyzed by themselves, the rings from a single tree or mollusk may sometimes reflect conditions that are either favorable or unfavorable for growth. When scientists look at numerous individuals of the same species, however, the consistency of the ring patterns allows them to build a model and compare that to known climatic measurements.

But when you add in a second species – and compare the growth rings of geoducks and Douglas-firs, for example – the reliability of the data increases significantly, according to Bryan Black, a dendrochonologist at Oregon State University. Black has been applying tree-ring techniques to the growth increments of long-lived marine and freshwater species.

"When we associate rings from one species with known sea surface temperatures, we can account for almost 50 percent of the variability in the instrument records," Black said. "But when we add the data from a second species, we can increase that number to 70 percent or more. And that's important because it is allowing us to go back and create more accurate models of sea surface temperatures and at time scales more than twice the length of the instrument measurements.

"Each species brings its own 'perspective' of past climate, such that their combination provides a more accurate account," Black added.

Results of the study are being published in the professional journal, Palaeogeography, Palaeoclimatology, Palaeoecology. Other authors include Carolyn Copenheaver of Virginia Tech, David Frank of the Swiss Federal Institute for Forest, Snow and Landscape Research, and Matthew Stuckey and Rose Kormanyos of OSU's Hatfield Marine Science Center.

Sea surface temperatures are an important factor in analyzing the effects of climate change, said Black, a researcher at OSU's Hatfield Marine Science Center in Newport and lead author on the study. Any methodology that improves scientists' ability to estimate their past variability is met with interest in the research community. This new study has enabled scientists to develop an improved model of sea surface temperatures in the northeastern Pacific Ocean dating back to 1880.

When Black first began publishing comparisons of tree rings and the otoliths – or ear bones – of long-lived fish, he attracted the attention of climate change scientists.

"We found that chronologies for rockfish living at the 300-meter depth in the Pacific strongly related to tree-ring chronologies in the Cascade Mountains as well as to Pacific geoduck along the coast," Black said.

That study, recently published by Black in the professional journal Marine Ecology-Progress Series, showed that climate synchronized the growth of organisms from the continental shelf to alpine forests.

"The next step was to use the longest-lived organisms – trees and the geoduck – to tell us about climate prior to the start of instrumental records," Black pointed out.

Sea surface temperatures affect climate on land and when there is a spike in average yearly temperatures, such as during an El Nino year, it can have a profound impact on both trees and marine life. In general, Black said, warmer temperatures boost metabolism in geoduck and result in greater growth rates. Warm sea surface temperatures also mean less snow in the Cascade Mountains and a longer growing season for Douglas-firs and other trees, which are reflected in wider growth rings.

The limiting factor in using growth rings to study climate change is the age of the geoduck specimens. Old-growth evergreens may reach 500 to 1,000 years in age, but geoducks rarely exceed 150 years.

"Scientists at the Canadian Department of Fisheries and Oceans are dredging up shells of dead geoducks from the ocean floor," Black said, "and we hope we can append their growth patterns to chronology developed from live individuals. If so, it may be possible to extend geoduck chronologies over several centuries and greatly extend our climate histories."

Black is working with Jason Dunham, an ecologist with the U.S. Geological Survey in Corvallis, and OSU graduate student Brett Blundon to apply tree ring techniques to freshwater mussels, which also show annual growth through rings. They recently discovered that wider growth rings reflect low river flows during that year, which is another valuable piece of climate information.

"We're not sure why low river flows are associated with good growth in freshwater mussels," Black said. "High-flow events may damage the mussel, while low-flow events may be associated with higher food levels. But it is another example of how aquatic organisms can provide valuable information on climate impacts and history."

Bryan Black | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>