Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doppler radars help increase monsoon rainfall prediction accuracy

06.10.2010
Doppler weather radar will significantly improve forecasting models used to track monsoon systems influencing the monsoon in and around India, according to a research collaboration including Purdue University, the National Center for Atmospheric Research and the Indian Institute of Technology Delhi.

Dev Niyogi, a Purdue associate professor of agronomy and earth and atmospheric sciences, said modeling of a monsoon depression track can have a margin of error of about 200 kilometers for landfall, which can be significant for storms that produce as much as 20-25 inches of rain as well as inland floods and fatalities.

"When you run a forecast model, how you represent the initial state of the atmosphere is critical. Even if Doppler radar information may seem highly localized, we find that it enhances the regional atmospheric conditions, which, in turn, can significantly improve the dynamic prediction of how the monsoon depression will move as the storm makes landfall," Niyogi said. "It certainly looks like a wise investment made in Doppler radars can help in monsoon forecasting, particularly the heavy rain from monsoon processes."

Niyogi, U.C. Mohanty, a professor in the Centre for Atmospheric Sciences at the Indian Institute of Technology, and Mohanty's doctoral student, Ashish Routray, collaborated with scientists at the National Center for Atmospheric Research and gathered information such as radial velocity and reflectivity from six Doppler weather radars that were in place during storms. Using the Weather Research and Forecasting Model, they found that incorporating the Doppler radar-based information decreased the error of the monsoon depression's landfall path from 200 kilometers to 75 kilometers.

Monsoons account for 80 percent of the rain India receives each year. Mohanty said more accurate predictions could better prepare people for heavy rains that account for a number of deaths in a monsoon season.

"Once a monsoon depression passes through, it can cause catastrophic floods in the coastal areas of India," Mohanty said. "Doppler radar is a very useful tool to help assess these things."

The researchers modeled monsoon depressions and published their findings in the Quarterly Journal of the Royal Meteorological Society. Future studies will incorporate more simulations and more advanced models to test the ability of Doppler radar to track monsoon processes. Niyogi said the techniques and tools being developed also could help predict landfall of tropical storm systems that affect the Caribbean and the United States.

The National Science Foundation CAREER program, U.S. Agency for International Development and the Ministry of Earth Sciences in India funded the study.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/101004NiyogiDoppler.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu
http://www.purdue.edu/newsroom/research/2010/101004NiyogiDoppler.html

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>