Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What We Don't Know About Liquefaction Could Hurt Us

21.08.2008
In one corner of a huge civil engineering laboratory on campus, Dr. Ronaldo Luna watches a machine shake silt from the Mississippi River until it liquefies.

“This is what would happen during a major earthquake along the Mississippi River,” says Luna, an associate professor of civil, architectural and environmental engineering at Missouri University of Science and Technology.

Researchers don’t fully understand the liquefaction process for silts (they have a better understanding of how it works with sands), but Luna is confident, based on his tests, that a 6.5 magnitude earthquake or bigger would cause solid surfaces along the banks of the Mississippi River to turn, momentarily, into liquid.

This would be very bad. For instance, liquefaction of river silts would cause bridges to fail in St. Louis during a big earthquake.

Last spring, Luna presented a paper, “Liquefaction Behavior of Mississippi River Silts,” at the Geotechnical Earthquake Engineering and Soil Dynamics Conference in Sacramento, Calif. The conference is only held once every 10 years.

“We are providing data points to what is already known about liquefaction in other areas,” Luna says.

Researchers and scientists have had plenty of chances to study what happens during and immediately after a major earthquake in well-shook places like California. But the last really big quakes in the Midwest occurred in 1812.

We do know that, due to differences in geography, major quakes in the Midwest are felt over a greater area than similar-sized quakes in California.

According to Luna, river silts in the New Madrid region are similar to those in earthquake-prone areas of China and India.

Last May, a devastating 7.9 earthquake caused extensive damage throughout the Sichuan province in the interior of China.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

Further reports about: Earthquake Liquefaction Luna Mississippi earthquake-prone areas river silts

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>