Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Dollars and Scents: On the Trail of Sandalwood Oil

09.04.2010
Roger Turpening has made a career of searching for hidden things of great value, many of them deep underground and traded on commodities exchanges. Now he is applying his seismic imaging skills in pursuit of another kind of oil, one that grows in trees.

If you’ve ever been transported by a breath of L’Air du Temps or Chanel °5, then you know something of the sandalwood tree. The oil found in its heartwood forms a base note in some of the world’s great perfumes, and, at about a thousand dollars a pound, it’s one reason why they are so dear.

It takes 12 to 15 years or longer to grow a sandalwood tree that contains an appreciable amount of oil, which is concentrated in the wood in the center of its trunk and in its roots.

To view a tree’s interior , foresters sometimes remove a tiny core of wood, which takes 15 minutes, and send it to the company’s lab, which takes a week. Unfortunately, the hole forms a portal for insects and disease. Moreover, since the heartwood is at times not located precisely along the axis of the tree, the forester can miss the valuable wood. Because of these difficulties, very few trees are sampled.

To collect the oil, loggers first yank the tree out of the dirt, roots and all. Sometimes they find oil. Sometimes they don’t, and all they are left with for years of effort nurturing a potentially precious tree is a few bundles of incense sticks—and a profound regret at not waiting another year or two.

This is where Turpening, a geophysicist at Michigan Technological University, comes in. Using seismic technology like that he developed to find the structures that harbor oil thousands of feet beneath the surface of the Earth, he has crafted a tree imaging system that can detect the oily heartwood a few inches inside a tree.

The system sends sound waves through the trunk that respond to the heartwood. Computer programs then generate multicolored digital printouts showing cross-sections of the tree; heartwood appears as a deep red disc in the center. Wood without oil, the sapwood, shows up as green or yellow.

The system could result in huge savings to sandalwood growers. It also has potential in the more mundane but potentially lucrative lumber industry. “We’ve been asked to think about its use on saw logs just before they go up to the saw,” says Turpening. If it could detect knots or other flaws, the cuts could be adjusted to maximize the value of the log. “And if veneer has any knots at all, they can ruin a sheet,” he says. “If you knew there was a problem with a log, you might not even buy it.”

The Freshman Connection

Until a month ago, their system had one minor drawback: it took 16 minutes to generate an image. That wouldn’t be excessive for someone deciding whether or not to harvest a $3,000 sandalwood tree. But in a sawmill, 16 minutes is eternal.

Turpening explained the problem to a group of undergraduates in Michigan Tech's Research Scholars program and caught the attention of first-year chemical engineering student Mackenzie Roeser, of Huntley, Ill., and his friend, Scott VanderLugt, of Kalamazoo, a computer science major.

“Roger did his presentation, and we thought it was cool,” said Roeser. When they heard how long it was taking to generate the images, they thought they might have a solution.

“Their contribution is just astounding,” says Turpening. “What used to take 16 minutes now takes 11 seconds.” At the end of the day, Roeser and VanderLugt had slashed the time it took to generate an image by over 98 percent.

Now the group aims to refine their technology to make it easier to use and to provide higher resolution images of the oily heartwood that could be used in stripping away the sapwood.

Their work was made possible in part by a Michigan Universities Commercialization Initiative grant.

Roger Turpening, roger@mtu.edu, 906-487-1784

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>