Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Dollars and Scents: On the Trail of Sandalwood Oil

09.04.2010
Roger Turpening has made a career of searching for hidden things of great value, many of them deep underground and traded on commodities exchanges. Now he is applying his seismic imaging skills in pursuit of another kind of oil, one that grows in trees.

If you’ve ever been transported by a breath of L’Air du Temps or Chanel °5, then you know something of the sandalwood tree. The oil found in its heartwood forms a base note in some of the world’s great perfumes, and, at about a thousand dollars a pound, it’s one reason why they are so dear.

It takes 12 to 15 years or longer to grow a sandalwood tree that contains an appreciable amount of oil, which is concentrated in the wood in the center of its trunk and in its roots.

To view a tree’s interior , foresters sometimes remove a tiny core of wood, which takes 15 minutes, and send it to the company’s lab, which takes a week. Unfortunately, the hole forms a portal for insects and disease. Moreover, since the heartwood is at times not located precisely along the axis of the tree, the forester can miss the valuable wood. Because of these difficulties, very few trees are sampled.

To collect the oil, loggers first yank the tree out of the dirt, roots and all. Sometimes they find oil. Sometimes they don’t, and all they are left with for years of effort nurturing a potentially precious tree is a few bundles of incense sticks—and a profound regret at not waiting another year or two.

This is where Turpening, a geophysicist at Michigan Technological University, comes in. Using seismic technology like that he developed to find the structures that harbor oil thousands of feet beneath the surface of the Earth, he has crafted a tree imaging system that can detect the oily heartwood a few inches inside a tree.

The system sends sound waves through the trunk that respond to the heartwood. Computer programs then generate multicolored digital printouts showing cross-sections of the tree; heartwood appears as a deep red disc in the center. Wood without oil, the sapwood, shows up as green or yellow.

The system could result in huge savings to sandalwood growers. It also has potential in the more mundane but potentially lucrative lumber industry. “We’ve been asked to think about its use on saw logs just before they go up to the saw,” says Turpening. If it could detect knots or other flaws, the cuts could be adjusted to maximize the value of the log. “And if veneer has any knots at all, they can ruin a sheet,” he says. “If you knew there was a problem with a log, you might not even buy it.”

The Freshman Connection

Until a month ago, their system had one minor drawback: it took 16 minutes to generate an image. That wouldn’t be excessive for someone deciding whether or not to harvest a $3,000 sandalwood tree. But in a sawmill, 16 minutes is eternal.

Turpening explained the problem to a group of undergraduates in Michigan Tech's Research Scholars program and caught the attention of first-year chemical engineering student Mackenzie Roeser, of Huntley, Ill., and his friend, Scott VanderLugt, of Kalamazoo, a computer science major.

“Roger did his presentation, and we thought it was cool,” said Roeser. When they heard how long it was taking to generate the images, they thought they might have a solution.

“Their contribution is just astounding,” says Turpening. “What used to take 16 minutes now takes 11 seconds.” At the end of the day, Roeser and VanderLugt had slashed the time it took to generate an image by over 98 percent.

Now the group aims to refine their technology to make it easier to use and to provide higher resolution images of the oily heartwood that could be used in stripping away the sapwood.

Their work was made possible in part by a Michigan Universities Commercialization Initiative grant.

Roger Turpening, roger@mtu.edu, 906-487-1784

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>