Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Dollars and Scents: On the Trail of Sandalwood Oil

09.04.2010
Roger Turpening has made a career of searching for hidden things of great value, many of them deep underground and traded on commodities exchanges. Now he is applying his seismic imaging skills in pursuit of another kind of oil, one that grows in trees.

If you’ve ever been transported by a breath of L’Air du Temps or Chanel °5, then you know something of the sandalwood tree. The oil found in its heartwood forms a base note in some of the world’s great perfumes, and, at about a thousand dollars a pound, it’s one reason why they are so dear.

It takes 12 to 15 years or longer to grow a sandalwood tree that contains an appreciable amount of oil, which is concentrated in the wood in the center of its trunk and in its roots.

To view a tree’s interior , foresters sometimes remove a tiny core of wood, which takes 15 minutes, and send it to the company’s lab, which takes a week. Unfortunately, the hole forms a portal for insects and disease. Moreover, since the heartwood is at times not located precisely along the axis of the tree, the forester can miss the valuable wood. Because of these difficulties, very few trees are sampled.

To collect the oil, loggers first yank the tree out of the dirt, roots and all. Sometimes they find oil. Sometimes they don’t, and all they are left with for years of effort nurturing a potentially precious tree is a few bundles of incense sticks—and a profound regret at not waiting another year or two.

This is where Turpening, a geophysicist at Michigan Technological University, comes in. Using seismic technology like that he developed to find the structures that harbor oil thousands of feet beneath the surface of the Earth, he has crafted a tree imaging system that can detect the oily heartwood a few inches inside a tree.

The system sends sound waves through the trunk that respond to the heartwood. Computer programs then generate multicolored digital printouts showing cross-sections of the tree; heartwood appears as a deep red disc in the center. Wood without oil, the sapwood, shows up as green or yellow.

The system could result in huge savings to sandalwood growers. It also has potential in the more mundane but potentially lucrative lumber industry. “We’ve been asked to think about its use on saw logs just before they go up to the saw,” says Turpening. If it could detect knots or other flaws, the cuts could be adjusted to maximize the value of the log. “And if veneer has any knots at all, they can ruin a sheet,” he says. “If you knew there was a problem with a log, you might not even buy it.”

The Freshman Connection

Until a month ago, their system had one minor drawback: it took 16 minutes to generate an image. That wouldn’t be excessive for someone deciding whether or not to harvest a $3,000 sandalwood tree. But in a sawmill, 16 minutes is eternal.

Turpening explained the problem to a group of undergraduates in Michigan Tech's Research Scholars program and caught the attention of first-year chemical engineering student Mackenzie Roeser, of Huntley, Ill., and his friend, Scott VanderLugt, of Kalamazoo, a computer science major.

“Roger did his presentation, and we thought it was cool,” said Roeser. When they heard how long it was taking to generate the images, they thought they might have a solution.

“Their contribution is just astounding,” says Turpening. “What used to take 16 minutes now takes 11 seconds.” At the end of the day, Roeser and VanderLugt had slashed the time it took to generate an image by over 98 percent.

Now the group aims to refine their technology to make it easier to use and to provide higher resolution images of the oily heartwood that could be used in stripping away the sapwood.

Their work was made possible in part by a Michigan Universities Commercialization Initiative grant.

Roger Turpening, roger@mtu.edu, 906-487-1784

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>