Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity of habitats at natural oil seeps

22.08.2016

Research team investigates desolate sea-floor area in the southern Gulf of Mexico

Habitats surrounding natural oil seeps on the sea floor are multifaceted and diverse. During an expedition organized by MARUM, the Center for Marine Environmental Sciences, researchers discovered gas-bubble streams, massive gas hydrates, oil-soaked sediments, and deposits of heavy oil all closely spaced at a depth of around three kilometers.


Flow structures of heavy oil at Mictlan Knoll in about 3100 meter water depth.

Photo: MARUM - Center for Marine Environmental Sciences

Each of the different constituents: gas, light oil, and heavy oil congealed to asphalt, is home to its own characteristic group of organisms. The scientists have now published their initial results, along with photos from the remotely operated vehicle MARUM-QUEST, in the journal Biogeosciences.

“Recent years have seen a minor revolution in the field of marine research,” explains first author Dr. Heiko Sahling, a scientist at MARUM and the Geosciences Department of the University of Bremen. Many German research ships have been outfitted with state-of-the-art multibeam echosounders. These are of great help in the systematic search for natural seeps of oil and gas on the sea floor.

“In the past,” says Sahling, “this was more like the proverbial search for a needle in a haystack. Now we have found habitats on the sea floor that were unknown before.”

Scientists use the echosounders to detect gas bubbles in the water column. Where hydrocarbons are escaping, the acoustic signal is amplified in the water, and to some extent within the sea floor as well. The team of specialists from Bremen, Kiel, Vienna (Austria), Mexico City (Mexico) and Talahassee (Fla., USA) applied this modern technology during an expedition to the Bay of Campeche in the southern Gulf of Mexico.

Through a project financed by the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) scientists, under the leadership of Prof. Dr. Gerhard Bohrmann, have discovered hundreds of gas seeps and investigated a number of them in detail with the submersible vehicle MARUM-QUEST. Their goal was to reveal the processes of hydrocarbon movement at natural seeps. In what form are they released, how do they impact the biological assemblages on the sea floor, how rapidly does the oil break down, and what happens to the released gas?

“The gas, in part, is converted to gas hydrates, which form small mounds on the sea floor that are densely populated by meter-long tube worms,” continues Heiko Sahling. “Sometimes the mounds are broken open, allowing a view into several-meter-thick gas hydrates, a very rare observation until now. The gas hydrates are overlain by a reaction zone where microbial communities convert methane, carbonate is precipitated, and dense colonies of tube worms develop. These hold the mounds together and consume reduced sulfur compounds for nutrition. It is truly a remarkable habitat,” Sahling considers.

In addition to the gas, liquid oil also flows out of the sea floor. It ascends slowly through small white chimneys, the drops of oil attached by elongated threads or seeping through the sediments. “For organisms that are not adapted, the oil is harmful,” explains Heiko Sahling, “but the bountiful life at these sites shows that there are certain organisms that can even thrive on these hydrocarbons.”

On the other hand, some components of the so-called “heavy oil” dissipate. What remains forms flow structures of asphalt on the sea floor. “During the expedition we documented many of these unique structures,” says Heiko Sahling. “The asphalt covers hundreds of meters of the sea floor and thus also forms a habitat that is colonized by tube worms and bacterial mats."

Original publication:
Heiko Sahling, Christian Borowski, Elva Escobar-Briones, Adriana Gaytán-Caballero, Chieh-Wei Hsu, Markus Loher, Ian MacDonald, Yann Marcon, Thomas Pape, Miriam Römer, Maxim Rubin-Blum, Florence Schubotz, Daniel Smrzka, Gunter Wegener and Gerhard Bohrmann: Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico.
Published in: Biogeoscience, DOI: 10.5194/bg-13-4491-2016

Contact:
Dr. Heiko Sahling
Telephone: 0421 218 65054
E-Mail: hsahling@marum.de

Further information / Photo material:
Ulrike Prange
MARUM – Public Relations
Telephone: 0421 218 65540
E-Mail: medien@marum.de

Weitere Informationen:

http://www.marum.de/en/Diversity_of_habitats_at_natural_oil_seeps.html

Ulrike Prange | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>