Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diseased trees new source of climate gas

08.08.2012
Diseased trees in forests may be a significant new source of methane that causes climate change, according to researchers at the Yale School of Forestry & Environmental Studies in Geophysical Research Letters.

Sixty trees sampled at Yale Myers Forest in northeastern Connecticut contained concentrations of methane that were as high as 80,000 times ambient levels. Normal air concentrations are less than 2 parts per million, but the Yale researchers found average levels of 15,000 parts per million inside trees.

"These are flammable concentrations," said Kristofer Covey, the study's lead author and a Ph.D. candidate at Yale. "Because the conditions thought to be driving this process are common throughout the world's forests, we believe we have found a globally significant new source of this potent greenhouse gas."

The estimated emission rate from an upland site at the Yale forest is roughly equivalent to burning 40 gallons of gasoline per hectare of forest per year. It also has a global warming potential equivalent to 18 percent of the carbon being sequestered by these forests, reducing their climate benefit of carbon sequestration by nearly one-fifth.

"If we extrapolate these findings to forests globally, the methane produced in trees represents 10 percent of global emissions," said Xuhui Lee, a co-author of the study and Sara Shallenberger Brown Professor of Meteorology at Yale. "We didn't know this pathway existed."

The trees producing methane are older—between 80 and 100 years old—and diseased. Although outwardly healthy, they are being hollowed out by a common fungal infection that slowly eats through the trunk, creating conditions favorable to methane-producing microorganisms called methanogens.

"No one until now has linked the idea that fungal rot of timber trees, a production problem in commercial forestry, might also present a problem for greenhouse gas and climate change mitigation," said Mark Bradford, a co-author and Assistant Professor of Terrestrial Ecosystem Ecology at F&ES.

Red maple, an abundant species in North America, had the highest methane concentrations, but other common species, including oak, birch and pine were also producers of the gas. The rate of methane emissions was 3.1 times higher in the summer, suggesting that higher temperatures may lead to increasing levels of forest methane that, in turn, lead to ever-higher temperatures.

"These findings suggest decay in living trees is important to biogeochemists and atmospheric scientists seeking to understand global greenhouse gas budgets and associated climate change," said Covey.

The other co-authors of the paper, "Elevated Methane Concentrations in Trees of an Upland Forest," are Stephen Wood, a Ph.D. student at Columbia University, and Robert Warren, former postdoctoral researcher at Yale and now an assistant professor at Buffalo State (SUNY). The paper can be viewed at www.agu.org/pubs/crossref/pip/2012GL052361.shtml

David DeFusco | EurekAlert!
Further information:
http://www.yale.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>