Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of Possible Earliest Animal Life Pushes Back Fossil Record

Primitive sponge-like creatures lived in ocean reefs 650 million years ago

Scientists may have discovered in Australia the oldest fossils of animal bodies. These findings push back the clock on the scientific world's thinking regarding when animal life appeared on Earth. The results suggest that primitive sponge-like creatures lived in ocean reefs about 650 million years ago.

The shelly fossils, found beneath a 635 million-year-old glacial deposit in South Australia, represent the earliest evidence of animal body forms in the current fossil record, predating other evidence by at least 70 million years.

"These scientists have found that animals may have appeared on Earth 90 million years earlier than previously known," said H. Richard Lane of the National Science Foundation (NSF)'s Division of Earth Sciences, which funded the research.

"This is comparable to resetting modern times to begin during the late Cretaceous."

Previously, the oldest known fossils of hard-bodied animals were from two reef-dwelling organisms that lived around 550 million years ago.

There are also controversial fossils of soft-bodied animals that date to the latter part of the Ediacaran period between 577 and 542 million years ago.

Princeton University geoscientists Adam Maloof and Catherine Rose happened upon the new fossils while working on a project focused on the severe ice age that marked the end of the Cryogenian period 635 million years ago.

Their findings, published in the August 17 issue of the journal Nature Geoscience, provide the first direct evidence that animal life existed before--and probably survived--the severe "snowball Earth" event known as the Marinoan glaciation that left much of the globe covered in ice at the end of the Cryogenian.

"We were accustomed to finding rocks with embedded mud chips, and at first this is what we thought we were seeing," Maloof said.

"But then we noticed these repeated shapes that we were finding everywhere--wishbones, rings, perforated slabs and anvils. We realized we had stumbled upon some sort of organism, and we decided to analyze the fossils.

"No one was expecting that we would find animals that lived before the ice age, and since animals probably did not evolve twice, we are suddenly confronted with the question of how a relative of these reef-dwelling animals survived the ‘snowball Earth.'"

Analyzing the fossils turned out to be easier said than done, as the composition and location of the fossils made it such that they could not be removed from the surrounding rock using conventional techniques, nor could they be imaged using X-ray scanning techniques.

X-rays are only able to distinguish between materials with different densities, which is why they can be used to image bones that are inside the human body or buried within a rock.

But the most ancient skeletal fossils are made not of bone, but of calcite--the same material that makes up the rock matrix in which they are embedded.

Therefore X-rays could not be used to "illuminate" the newly discovered fossils and the researchers had to develop and refine another method.

Maloof, Rose and their collaborators teamed up with professionals at Situ Studio, a Brooklyn-based design and digital fabrication studio, to create three-dimensional digital models of two individual fossils that were embedded in the surrounding rock.

As part of the process, team members shaved off 50 microns of sample at a time--about half the width of a human hair--and photographed the polished rock surface each time. The team ground and imaged nearly 500 slices of the rock.

Using specialized software techniques developed specifically for this project, the researchers then "stacked" the outlines on top of one another to create a complete three-dimensional model of the creature.

The technique is similar to the way CAT scan technology combines a series of two-dimensional X-rays to create a three-dimensional image of the inside of the body.

The technique that was developed served to automate the process--turning a prohibitively time-consuming task into an efficient and effective method for fossil reconstruction.

"For Situ Studio, the most exciting aspect of this collaboration is that we were able to successfully employ knowledge developed within an architectural practice to help solve problems in an entirely different field--applying design tools to spatial problems on a completely different scale," said Bradley Samuels, a founding partner of Situ Studio.

"It became an exercise in marrying disparate bodies of knowledge to address pressing questions in the geosciences."

When they began the digital reconstruction process, the shape of some of the two-dimensional slices made the researchers suspect they might be dealing with the previously discovered Namacalathus, a goblet-shaped creature featuring a long body stalk topped with a hollow ball.

But their model revealed irregularly shaped, centimeter-scale animals with a network of internal canals. The creatures looked nothing like Namacalathus.

After considering a variety of alternatives, the scientists decided that the fossil organisms most closely resembled sponges--simple filter-feeding animals that extract food from water as it flows through specialized body channels.

Previously, the oldest known undisputed fossilized sponges were around 520 million years old, dating to the Cambrian Period.

In future research, Maloof and his collaborators intend to refine the three-dimensional digital reconstruction technique to automate and increase the speed of the process.

This could have a significant impact on paleontology, Maloof said, enabling the analysis of myriad early fossils that are currently inaccessible to the tools of modern science.

In addition to Maloof and Rose, Princeton researchers on the team included geoscientist Frederik Simons; former postdoctoral fellow Claire Calmet; Nan Yao, the director of the Imaging and Analysis Center in the Princeton Institute for the Science and Technology of Materials (PRISM); and PRISM senior research specialist Gerald Poirier.

The team also included Douglas Erwin of the Smithsonian Institution and Samuels, Robert Beach, Basar Girit, Wesley Rozen, Sigfus Briedfjord and Aleksey Lukyanov of Situ Studio.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
Kitta MacPherson, Princeton University (609) 258-5729
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>