Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Discoveries Improve Climate Models

04.02.2011
Underwater Ridges Impact Ocean's Flow of Warm Water

New discoveries on how underwater ridges impact the ocean's circulation system will help improve climate projections.

An underwater ridge can trap the flow of cold, dense water at the bottom of the ocean. Without the ridge, deepwater can flow freely and speed up the ocean circulation pattern, which generally increases the flow of warm surface water.

Warm water on the ocean's surface makes the formation of sea ice difficult. With less ice present to reflect the sun, surface water will absorb more sunlight and continue to warm.

U.S. Geological Survey scientists looked back 3 million years, to the mid-Pliocene warm period, and studied the influence of the North Atlantic Ocean’s Greenland-Scotland Ridge on surface water temperature.

"Sea-surface temperatures in the North Atlantic and Arctic Oceans were much warmer during the mid-Pliocene warm period than they are today, but climate models so far have been unable to fully understand and account for the cause of this large scale of warming," said USGS scientist Marci Robinson. "Our research suggests that a lower height of the Greenland-Scotland Ridge during this geologic age was a contributor to the increase of poleward heat transport."

"This is the first time the impact of a North Atlantic underwater ridge on the ocean circulation system was tested in a mid-Pliocene experiment," said Robinson. "Understanding this process allows for more accurate predictions of factors such as ocean temperature and ice volume changes."

Research was conducted on the mid-Pliocene because it is the most recent interval in the earth’s history in which global temperatures reached and remained at levels similar to those projected for the 21st century by the Intergovernmental Panel on Climate Change. Therefore, it may be one of the closest analogs in helping to understand the earth's current and future conditions.

The article was published in the journal, Palaeogeography, Palaeoclimatology, Palaeoecology, and can be viewed online. Any journalists who are not registered with this journal and cannot view this article can contact us to have a copy emailed to them.

This research contributes to the scientific foundation needed to make sound planning decisions in response to changes in climate and land use. To learn more, visit the Climate and Land Use Change website.

The USGS led this research through the Pliocene Research, Interpretation and Synoptic Mapping group. The primary collaborators in this research are the University of Leeds, University of Bristol and the British Geological Survey. More information about PRISM research is available online.

Jessica Robertson | EurekAlert!
Further information:
http://www.usgs.gov
http://www.usgs.gov/newsroom/article.asp?ID=2691

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>