Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty pipeline: Methane from fracking sites can flow to abandoned wells, new study shows

20.10.2015

Emissions are unmeasured, affect debate over proposed EPA regulations

As debate roils over EPA regulations proposed this month limiting the release of the potent greenhouse gas methane during fracking operations, a new University of Vermont study funded by the National Science Foundation shows that abandoned oil and gas wells near fracking sites can be conduits for methane escape not currently being measured.


A fracking operation on the Marcellus Shale Formation in Pennsylvania is shown. New research shows that abandoned oil and gas wells near fracking sites can be conduits for methane emissions not currently being measured.

Credit: U.S. Geological Survey/public domain

The study, to be published in Water Resources Research on October 20, demonstrates that fractures in surrounding rock produced by the hydraulic fracturing process are able to connect to preexisting, abandoned oil and gas wells, common in fracking areas, which can provide a pathway to the surface for methane.

A recent paper published in the Proceedings of the National Academies of Science showed that methane release measured at abandoned wells near fracking sites can be significant but did not investigate how the process occurs.

"The debate over the new EPA rules needs to take into account the system that fracking operations are frequently part of, which includes a network of abandoned wells that can effectively pipeline methane to the surface," said the new paper's lead author, James Montague, an environmental engineering doctoral student at the University of Vermont, who co-wrote the paper with George Pinder, professor of environmental engineering at the university.

The study focused on an area in New York State underlain by the Marcellus Shale formation, which had been fracked until a ban went into effect in the state in the summer of 2015.

The formation, composed of layers of shale and hydrocarbons, is beneath land that has been the site of conventional oil and gas drilling since the 1880s, when American oil companies first began operating.

About 40,000 existing wells in New York, 30,000 of them located within the footprint of the Marcellus formation, are documented by the state's Department of Environmental Conservation. But the department estimates that 70,000 wells in all have been drilled.

Because the location of so many wells is not known - a common phenomenon in many regions where fracking takes place - the study uses a mathematical model to predict the likelihood that the hydraulically induced fractures of a randomly placed new well would connect to an existing wellbore.

The model put the probability that new fracking-induced fractures in the Marcellus formation would connect to an existing well bore at between .03 percent and 3 percent.

But industry-sponsored information made public since the paper was published vastly increased assumptions about the area impacted by a set of six to eight fracking wells known as a well pad - to two square miles -- increasing the probabilities cited in the paper by a factor of 10 or more.

While all fracking sites are different, most have a similar enough hydrocarbon profile that they attracted conventional oil and gas drilling in the past and most, like the Marcellus, have a large number of abandoned wells, many with unknown locations.

Not all abandoned wells provide a pathway to surface for methane. Only those that are damaged, largely when the concrete that buffers the well from the surrounding earth loses integrity, can act as a conduit.

But even a small percentage of damaged wellbores, given the large number of abandoned wells, can potentially pose an environmental risk, Pinder said.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>