Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty pipeline: Methane from fracking sites can flow to abandoned wells, new study shows

20.10.2015

Emissions are unmeasured, affect debate over proposed EPA regulations

As debate roils over EPA regulations proposed this month limiting the release of the potent greenhouse gas methane during fracking operations, a new University of Vermont study funded by the National Science Foundation shows that abandoned oil and gas wells near fracking sites can be conduits for methane escape not currently being measured.


A fracking operation on the Marcellus Shale Formation in Pennsylvania is shown. New research shows that abandoned oil and gas wells near fracking sites can be conduits for methane emissions not currently being measured.

Credit: U.S. Geological Survey/public domain

The study, to be published in Water Resources Research on October 20, demonstrates that fractures in surrounding rock produced by the hydraulic fracturing process are able to connect to preexisting, abandoned oil and gas wells, common in fracking areas, which can provide a pathway to the surface for methane.

A recent paper published in the Proceedings of the National Academies of Science showed that methane release measured at abandoned wells near fracking sites can be significant but did not investigate how the process occurs.

"The debate over the new EPA rules needs to take into account the system that fracking operations are frequently part of, which includes a network of abandoned wells that can effectively pipeline methane to the surface," said the new paper's lead author, James Montague, an environmental engineering doctoral student at the University of Vermont, who co-wrote the paper with George Pinder, professor of environmental engineering at the university.

The study focused on an area in New York State underlain by the Marcellus Shale formation, which had been fracked until a ban went into effect in the state in the summer of 2015.

The formation, composed of layers of shale and hydrocarbons, is beneath land that has been the site of conventional oil and gas drilling since the 1880s, when American oil companies first began operating.

About 40,000 existing wells in New York, 30,000 of them located within the footprint of the Marcellus formation, are documented by the state's Department of Environmental Conservation. But the department estimates that 70,000 wells in all have been drilled.

Because the location of so many wells is not known - a common phenomenon in many regions where fracking takes place - the study uses a mathematical model to predict the likelihood that the hydraulically induced fractures of a randomly placed new well would connect to an existing wellbore.

The model put the probability that new fracking-induced fractures in the Marcellus formation would connect to an existing well bore at between .03 percent and 3 percent.

But industry-sponsored information made public since the paper was published vastly increased assumptions about the area impacted by a set of six to eight fracking wells known as a well pad - to two square miles -- increasing the probabilities cited in the paper by a factor of 10 or more.

While all fracking sites are different, most have a similar enough hydrocarbon profile that they attracted conventional oil and gas drilling in the past and most, like the Marcellus, have a large number of abandoned wells, many with unknown locations.

Not all abandoned wells provide a pathway to surface for methane. Only those that are damaged, largely when the concrete that buffers the well from the surrounding earth loses integrity, can act as a conduit.

But even a small percentage of damaged wellbores, given the large number of abandoned wells, can potentially pose an environmental risk, Pinder said.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>