Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Dinosaur Rears Its Head

03.03.2010
The remains of a new herbivorous sauropod dinosaur, discovered near the world-famous Carnegie Quarry in Dinosaur National Monument, may help explain the evolution of the largest land animals ever to walk the earth.

University of Michigan paleontologist Jeffrey Wilson and graduate student John Whitlock, along with coauthors from Brigham Young University and Dinosaur National Monument, describe the new species in a paper published online Feb. 24 in the journal Naturwissenschaften.

The discovery represents a rare look at a sauropod skull, known for only a handful of the more than 120 species known to science. Skulls are important, because they can tell scientists a lot about what and how an animal ate.

"At first glance, sauropods don't seem to have done much to adapt to a life of eating plants," said Wilson, an assistant professor of geological sciences and an assistant curator at the U-M Museum of Paleontology. "They don't have some of the obvious hallmarks of herbivory seen in other dinosaurs, like beaks for slicing or cheeks to hold in food while chewing. They were obviously quite proficient at eating, though, and every skull gives us a few more pieces of the puzzle."

Together with paleontologists Brooks Britt (Brigham Young University) and Dan Chure (Dinosaur National Monument), Wilson and Whitlock compared the skulls and teeth of the new dinosaur to those of other sauropods and discovered one repeated trend throughout sauropod evolution: the development of narrow, pencil-like teeth from broad-bladed teeth.

"We know narrow-crowned teeth appear at least twice throughout sauropod history, and both times it appears to correspond to a rise in the number of species," Whitlock said. "This new animal is intermediate in terms of its tooth shape and helps us understand how and when one of these transitions occurred."

Exactly what this means for sauropod diets isn't clear, but the team has uncovered some clues.

"Narrow-crowned teeth are smaller than broad-bladed teeth, and for animals that continually replace their teeth throughout their lifetime, size can be an important factor in how fast that replacement happens," Wilson said. Faster-replacing teeth, the team thinks, are a biological response to high rates of tooth wear, possibly caused by shifts in diet or behavior.

The team has named the new dinosaur Abydosaurus mcintoshi, after Abydos, the burial place of the head and neck of the Egyptian god Osiris, and Jack McIntosh, a longtime contributor to sauropod paleontology and to paleontology at Dinosaur National Monument.

The work was funded by the National Science Foundation and the Woodrow Wilson National Fellowship Foundation.

More information:
Jeffrey Wilson: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1007
Naturwissenschaften: www.springer.com/life+sci/journal/114
Dinosaur National Monument: www.nps.gov/dino/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>