Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Dinosaur Rears Its Head

03.03.2010
The remains of a new herbivorous sauropod dinosaur, discovered near the world-famous Carnegie Quarry in Dinosaur National Monument, may help explain the evolution of the largest land animals ever to walk the earth.

University of Michigan paleontologist Jeffrey Wilson and graduate student John Whitlock, along with coauthors from Brigham Young University and Dinosaur National Monument, describe the new species in a paper published online Feb. 24 in the journal Naturwissenschaften.

The discovery represents a rare look at a sauropod skull, known for only a handful of the more than 120 species known to science. Skulls are important, because they can tell scientists a lot about what and how an animal ate.

"At first glance, sauropods don't seem to have done much to adapt to a life of eating plants," said Wilson, an assistant professor of geological sciences and an assistant curator at the U-M Museum of Paleontology. "They don't have some of the obvious hallmarks of herbivory seen in other dinosaurs, like beaks for slicing or cheeks to hold in food while chewing. They were obviously quite proficient at eating, though, and every skull gives us a few more pieces of the puzzle."

Together with paleontologists Brooks Britt (Brigham Young University) and Dan Chure (Dinosaur National Monument), Wilson and Whitlock compared the skulls and teeth of the new dinosaur to those of other sauropods and discovered one repeated trend throughout sauropod evolution: the development of narrow, pencil-like teeth from broad-bladed teeth.

"We know narrow-crowned teeth appear at least twice throughout sauropod history, and both times it appears to correspond to a rise in the number of species," Whitlock said. "This new animal is intermediate in terms of its tooth shape and helps us understand how and when one of these transitions occurred."

Exactly what this means for sauropod diets isn't clear, but the team has uncovered some clues.

"Narrow-crowned teeth are smaller than broad-bladed teeth, and for animals that continually replace their teeth throughout their lifetime, size can be an important factor in how fast that replacement happens," Wilson said. Faster-replacing teeth, the team thinks, are a biological response to high rates of tooth wear, possibly caused by shifts in diet or behavior.

The team has named the new dinosaur Abydosaurus mcintoshi, after Abydos, the burial place of the head and neck of the Egyptian god Osiris, and Jack McIntosh, a longtime contributor to sauropod paleontology and to paleontology at Dinosaur National Monument.

The work was funded by the National Science Foundation and the Woodrow Wilson National Fellowship Foundation.

More information:
Jeffrey Wilson: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1007
Naturwissenschaften: www.springer.com/life+sci/journal/114
Dinosaur National Monument: www.nps.gov/dino/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>