Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using digital SLRs to measure the height of Northern Lights

06.09.2013
Scientific research doesn’t often start from outreach projects.

Yet, Ryuho Kataoka from the National Institute of Polar Research in Tokyo, Japan, came up with an idea for a new method to measure the height of aurora borealis after working on a 3D movie for a planetarium.


All-sky images of aurora. Two digital SLRs (single-lens reflex cameras), equipped with fisheye lenses and GPS units, captured these two simultaneous all-sky images of aurora in Alaska, USA. The subtle differences between the left and right pictures allow researchers to measure the altitude where electrons in the atmosphere emit the light that produces aurora.
Kataoka et al., 2013

Kataoka and collaborators used two digital single-lens reflex (SLR) cameras set 8 km apart to capture 3D images of Northern Lights and determine the altitude where electrons in the atmosphere emit the light that produces aurora. The results are published today in Annales Geophysicae, a journal of the European Geosciences Union (EGU).

“We had initial success when we projected the digital SLR images at a planetarium and showed that the aurora could be seen in 3D. It was very beautiful, and I became confident that it should be possible to calculate the emission altitude using these images,” recalls Kataoka, who also works at the Graduate University for Advanced Studies (Sokendai) in Hayama, Japan. He teamed up with other Japanese researchers and an American scientist to do just that.

The separation distance between the human eyes is what allows us to see in 3D. When we look at an object, the images captured by the left and right eyes are slightly different from each other and when combined they give the brain the perception of depth. But because the distance between our eyes – about 5 cm – is small, this only works for objects that are not very far away.

Since aurora extend between about 90 and 400 km in altitude, a much larger separation distance is needed to see them in 3D. The researchers used two cameras, mimicking the left and right eyes, separated by 8 km across the Chatanika area in Alaska. Their two digital SLRs, equipped with fisheye lenses and GPS units, captured two simultaneous all-sky images that the researchers combined to create a 3D photograph of the aurora and measure the emission altitude.

“Using the parallax of the left-eye and the right-eye images, we can calculate the distance to the aurora using a [triangulation] method that is similar to the way the human brain comprehends the distance to an object,” explains Kataoka. Parallax is the difference in the apparent position of an object when observed at different angles.

Scientists have obtained altitude maps of aurora before. They are useful because they provide information about the energy of the electrons that produce the lights. But this is the first time the emission height of Northern Lights has been measured using images captured with digital SLR cameras. As the authors explain in the new Annales Geophysicae paper, the altitude maps obtained in this way are consistent with previous observations.

The technique is low cost and allows researchers to measure the altitude of small-scale features in the aurora. Further, it opens up the door for citizen scientists to get involved with auroral research.

“Commercially available GPS units for digital SLR cameras have become popular and relatively inexpensive, and it is easy and very useful for photographers to record the accurate time and position in photographic files. I am thinking of developing a website with a submission system to collect many interesting photographs from night-sky photographers over the world via the internet,” says Kataoka.

The researchers believe this may lead to new scientific findings, while working to engage the public in auroral research. After all, it was the beauty of 3D imaging of auroras that inspired Kataoka to develop a new tool for scientific research in the first place.

More Information

This research is presented in the paper ‘Stereoscopic determination of all-sky altitude maps of aurora using two ground-based Nikon DSLR cameras’ to appear in the EGU open access journal Annales Geophysicae on 6 September 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.annales-geophysicae.net/).

The scientific article is available online, free of charge, from the publication date onwards, at http://www.ann-geophys.net/recent_papers.html. *To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.*

The paper is authored by Ryuho Kataoka (National Institute of Polar Research, Tokyo, Japan and Graduate University for Advanced Studies [Sokendai], Hayama, Japan), Yoshizumi Miyoshi (Solar-Terrestrial Environment Laboratory, Nagoya University, Japan [STEL]), Kai Shigematsu (STEL), Donald Hampton (Geophysical Institute, University of Alaska, USA), Yoshiki Mori (Department of Mechanical Engineering, Shizuoka University, Japan), Takayuki Kubo (Department of Precision Engineering, The University of Tokyo, Japan [DPE]), Atsushi Yamashita (DPE), Masayuki Tanaka (Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Japan), Toshiyuki Takahei (Orihalcon Technologies, Inc., Japan), Taro Nakai (Hydrospheric Atmospheric Research Center, Nagoya University, Japan), Hiroko Miyahara (Musashino Art University, Tokyo, Japan) and Kazuo Shiokawa (STEL).

The *European Geosciences Union (www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contact*
Ryuho Kataoka
Associate Professor
National Institute of Polar Research
Tokyo, Japan
Tel: +81-42-512-0929
Email: kataoka.ryuho@nipr.ac.jp
Donald Hampton
Research Assistant Professor
Geophysical Institute, University of Alaska Fairbanks
Fairbanks, Alaska, USA
Tel: +1-907-455-2256
Email: dhampton@gi.alaska.edu
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.annales-geophysicae.net/
(journal website)
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

(original press release, including a 3D side-by-side video of aurora)

Dr. Bárbara Ferreira | EGU Press
Further information:
http://www.egu.eu
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>