Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using digital SLRs to measure the height of Northern Lights

06.09.2013
Scientific research doesn’t often start from outreach projects.

Yet, Ryuho Kataoka from the National Institute of Polar Research in Tokyo, Japan, came up with an idea for a new method to measure the height of aurora borealis after working on a 3D movie for a planetarium.


All-sky images of aurora. Two digital SLRs (single-lens reflex cameras), equipped with fisheye lenses and GPS units, captured these two simultaneous all-sky images of aurora in Alaska, USA. The subtle differences between the left and right pictures allow researchers to measure the altitude where electrons in the atmosphere emit the light that produces aurora.
Kataoka et al., 2013

Kataoka and collaborators used two digital single-lens reflex (SLR) cameras set 8 km apart to capture 3D images of Northern Lights and determine the altitude where electrons in the atmosphere emit the light that produces aurora. The results are published today in Annales Geophysicae, a journal of the European Geosciences Union (EGU).

“We had initial success when we projected the digital SLR images at a planetarium and showed that the aurora could be seen in 3D. It was very beautiful, and I became confident that it should be possible to calculate the emission altitude using these images,” recalls Kataoka, who also works at the Graduate University for Advanced Studies (Sokendai) in Hayama, Japan. He teamed up with other Japanese researchers and an American scientist to do just that.

The separation distance between the human eyes is what allows us to see in 3D. When we look at an object, the images captured by the left and right eyes are slightly different from each other and when combined they give the brain the perception of depth. But because the distance between our eyes – about 5 cm – is small, this only works for objects that are not very far away.

Since aurora extend between about 90 and 400 km in altitude, a much larger separation distance is needed to see them in 3D. The researchers used two cameras, mimicking the left and right eyes, separated by 8 km across the Chatanika area in Alaska. Their two digital SLRs, equipped with fisheye lenses and GPS units, captured two simultaneous all-sky images that the researchers combined to create a 3D photograph of the aurora and measure the emission altitude.

“Using the parallax of the left-eye and the right-eye images, we can calculate the distance to the aurora using a [triangulation] method that is similar to the way the human brain comprehends the distance to an object,” explains Kataoka. Parallax is the difference in the apparent position of an object when observed at different angles.

Scientists have obtained altitude maps of aurora before. They are useful because they provide information about the energy of the electrons that produce the lights. But this is the first time the emission height of Northern Lights has been measured using images captured with digital SLR cameras. As the authors explain in the new Annales Geophysicae paper, the altitude maps obtained in this way are consistent with previous observations.

The technique is low cost and allows researchers to measure the altitude of small-scale features in the aurora. Further, it opens up the door for citizen scientists to get involved with auroral research.

“Commercially available GPS units for digital SLR cameras have become popular and relatively inexpensive, and it is easy and very useful for photographers to record the accurate time and position in photographic files. I am thinking of developing a website with a submission system to collect many interesting photographs from night-sky photographers over the world via the internet,” says Kataoka.

The researchers believe this may lead to new scientific findings, while working to engage the public in auroral research. After all, it was the beauty of 3D imaging of auroras that inspired Kataoka to develop a new tool for scientific research in the first place.

More Information

This research is presented in the paper ‘Stereoscopic determination of all-sky altitude maps of aurora using two ground-based Nikon DSLR cameras’ to appear in the EGU open access journal Annales Geophysicae on 6 September 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.annales-geophysicae.net/).

The scientific article is available online, free of charge, from the publication date onwards, at http://www.ann-geophys.net/recent_papers.html. *To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.*

The paper is authored by Ryuho Kataoka (National Institute of Polar Research, Tokyo, Japan and Graduate University for Advanced Studies [Sokendai], Hayama, Japan), Yoshizumi Miyoshi (Solar-Terrestrial Environment Laboratory, Nagoya University, Japan [STEL]), Kai Shigematsu (STEL), Donald Hampton (Geophysical Institute, University of Alaska, USA), Yoshiki Mori (Department of Mechanical Engineering, Shizuoka University, Japan), Takayuki Kubo (Department of Precision Engineering, The University of Tokyo, Japan [DPE]), Atsushi Yamashita (DPE), Masayuki Tanaka (Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Japan), Toshiyuki Takahei (Orihalcon Technologies, Inc., Japan), Taro Nakai (Hydrospheric Atmospheric Research Center, Nagoya University, Japan), Hiroko Miyahara (Musashino Art University, Tokyo, Japan) and Kazuo Shiokawa (STEL).

The *European Geosciences Union (www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contact*
Ryuho Kataoka
Associate Professor
National Institute of Polar Research
Tokyo, Japan
Tel: +81-42-512-0929
Email: kataoka.ryuho@nipr.ac.jp
Donald Hampton
Research Assistant Professor
Geophysical Institute, University of Alaska Fairbanks
Fairbanks, Alaska, USA
Tel: +1-907-455-2256
Email: dhampton@gi.alaska.edu
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.annales-geophysicae.net/
(journal website)
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

(original press release, including a 3D side-by-side video of aurora)

Dr. Bárbara Ferreira | EGU Press
Further information:
http://www.egu.eu
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>