Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using digital SLRs to measure the height of Northern Lights

06.09.2013
Scientific research doesn’t often start from outreach projects.

Yet, Ryuho Kataoka from the National Institute of Polar Research in Tokyo, Japan, came up with an idea for a new method to measure the height of aurora borealis after working on a 3D movie for a planetarium.


All-sky images of aurora. Two digital SLRs (single-lens reflex cameras), equipped with fisheye lenses and GPS units, captured these two simultaneous all-sky images of aurora in Alaska, USA. The subtle differences between the left and right pictures allow researchers to measure the altitude where electrons in the atmosphere emit the light that produces aurora.
Kataoka et al., 2013

Kataoka and collaborators used two digital single-lens reflex (SLR) cameras set 8 km apart to capture 3D images of Northern Lights and determine the altitude where electrons in the atmosphere emit the light that produces aurora. The results are published today in Annales Geophysicae, a journal of the European Geosciences Union (EGU).

“We had initial success when we projected the digital SLR images at a planetarium and showed that the aurora could be seen in 3D. It was very beautiful, and I became confident that it should be possible to calculate the emission altitude using these images,” recalls Kataoka, who also works at the Graduate University for Advanced Studies (Sokendai) in Hayama, Japan. He teamed up with other Japanese researchers and an American scientist to do just that.

The separation distance between the human eyes is what allows us to see in 3D. When we look at an object, the images captured by the left and right eyes are slightly different from each other and when combined they give the brain the perception of depth. But because the distance between our eyes – about 5 cm – is small, this only works for objects that are not very far away.

Since aurora extend between about 90 and 400 km in altitude, a much larger separation distance is needed to see them in 3D. The researchers used two cameras, mimicking the left and right eyes, separated by 8 km across the Chatanika area in Alaska. Their two digital SLRs, equipped with fisheye lenses and GPS units, captured two simultaneous all-sky images that the researchers combined to create a 3D photograph of the aurora and measure the emission altitude.

“Using the parallax of the left-eye and the right-eye images, we can calculate the distance to the aurora using a [triangulation] method that is similar to the way the human brain comprehends the distance to an object,” explains Kataoka. Parallax is the difference in the apparent position of an object when observed at different angles.

Scientists have obtained altitude maps of aurora before. They are useful because they provide information about the energy of the electrons that produce the lights. But this is the first time the emission height of Northern Lights has been measured using images captured with digital SLR cameras. As the authors explain in the new Annales Geophysicae paper, the altitude maps obtained in this way are consistent with previous observations.

The technique is low cost and allows researchers to measure the altitude of small-scale features in the aurora. Further, it opens up the door for citizen scientists to get involved with auroral research.

“Commercially available GPS units for digital SLR cameras have become popular and relatively inexpensive, and it is easy and very useful for photographers to record the accurate time and position in photographic files. I am thinking of developing a website with a submission system to collect many interesting photographs from night-sky photographers over the world via the internet,” says Kataoka.

The researchers believe this may lead to new scientific findings, while working to engage the public in auroral research. After all, it was the beauty of 3D imaging of auroras that inspired Kataoka to develop a new tool for scientific research in the first place.

More Information

This research is presented in the paper ‘Stereoscopic determination of all-sky altitude maps of aurora using two ground-based Nikon DSLR cameras’ to appear in the EGU open access journal Annales Geophysicae on 6 September 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.annales-geophysicae.net/).

The scientific article is available online, free of charge, from the publication date onwards, at http://www.ann-geophys.net/recent_papers.html. *To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.*

The paper is authored by Ryuho Kataoka (National Institute of Polar Research, Tokyo, Japan and Graduate University for Advanced Studies [Sokendai], Hayama, Japan), Yoshizumi Miyoshi (Solar-Terrestrial Environment Laboratory, Nagoya University, Japan [STEL]), Kai Shigematsu (STEL), Donald Hampton (Geophysical Institute, University of Alaska, USA), Yoshiki Mori (Department of Mechanical Engineering, Shizuoka University, Japan), Takayuki Kubo (Department of Precision Engineering, The University of Tokyo, Japan [DPE]), Atsushi Yamashita (DPE), Masayuki Tanaka (Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Japan), Toshiyuki Takahei (Orihalcon Technologies, Inc., Japan), Taro Nakai (Hydrospheric Atmospheric Research Center, Nagoya University, Japan), Hiroko Miyahara (Musashino Art University, Tokyo, Japan) and Kazuo Shiokawa (STEL).

The *European Geosciences Union (www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contact*
Ryuho Kataoka
Associate Professor
National Institute of Polar Research
Tokyo, Japan
Tel: +81-42-512-0929
Email: kataoka.ryuho@nipr.ac.jp
Donald Hampton
Research Assistant Professor
Geophysical Institute, University of Alaska Fairbanks
Fairbanks, Alaska, USA
Tel: +1-907-455-2256
Email: dhampton@gi.alaska.edu
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.annales-geophysicae.net/
(journal website)
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

(original press release, including a 3D side-by-side video of aurora)

Dr. Bárbara Ferreira | EGU Press
Further information:
http://www.egu.eu
http://www.egu.eu/news/71/using-digital-slrs-to-measure-the-height-of-northern-lights/

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>