Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did life on Mars exist? New insights into organic carbon in the Tissint meteorite

03.12.2014

It was July 2011 when the Martian meteorite Tissint fell to Earth. An international research team has found organic carbon in rock sections of the meteorite and precisely unraveled its petrographic settings. The new results are presented in the periodical “Meteoritic and Planetary Science (MAPS)”.

There is persuasive evidence that the carbon originated on Mars. The scientists are convinced that biotic processes can explain all of their results better than abiotic processes. At the same time, however, they do not entirely rule out the possibility that the carbon could have originated from abiotic processes.


A photo of the Tissint Martian meteorite showing a hand sample that weighs 327g. Dark patches and veins on the broken surface are melt formed by a shock event that took place on Mars.

Photo: Hui Ren, Institute of Geology and Geophysics of the Chinese Academy of Sciences in Beijing; with references free for publication.


Prof. Dr. Ahmed El Goresy, University of Bayreuth.

Photo: Chr. Wißler; free for publication.

A highly renowned scientist

From the University of Bayreuth, Prof. Dr. Ahmed El Goresy was part of the international team and contributed significantly to the new findings. Since 2005 he has been a guest professor at the Bayerisches Geoinstitut (BGI), an international research centre of Bayreuth University. The Meteoritical Society, the leading international association for research of meteorites and planets, awarded him 2013 its Leonard medal – the highest award in the field of meteoritical studies.

Organic carbon originating from Mars

It was already known to the research community that the Tissint meteorite, as well as another 12 Martian meteorites that had previously been collected on Earth, contains organic carbon. However, it has always been a matter of debate whether this carbon formed after the meteorite’s fall on Earth. The authors of the new publication in MAPS refer to the short time between the fall and the finding of Tissint, when they argue that the carbon detected and analysed in their investigation did not originate on Earth, but during a much earlier phase on Mars, i.e., several hundred million years ago.

They make their case in particular by three compelling reasons:

(1) Organic carbon is located in microscopic veins of Tissint that must have been produced by a sudden melting process. It is implausible that such a process could occur in the desert area of Morocco where the meteorite fell.

(2) Some carbon grains exist within the veins in Tissint in the form of diamond. No conditions are known in which diamond could have formed on the surface of this North African region.

(3) The organic carbon in Tissint contains a very high proportion of deuterium, a heavy hydrogen isotope carrying one proton and one neutron in its nucleus.

“Such an enormous concentration of deuterium is the typical ‘finger print’ of Martian rocks as we know already from previous measurements”, says El Goresy.

Biotic origin in good agreement with the results obtained

Is the organic carbon within Tissint of biotic origin? Did microorganisms exist in that early phase of Mars that contributed to its formation? The authors point out that this would be in good agreement with the research results obtained. Another indication supporting their interpretation emerges from analyses by nano-scale secondary ion mass spectroscopy (NanoSIMS) which revealed a significant depletion of the carbon isotope 13C. The carbon isotope signature shows certain similarities to those observed in biotic activities on Earth.

„We cannot and do not want to entirely exclude the possibility that organic carbon within Tissint may be of abiotic origin” states Prof. Dr. Yangting Lin, the senior author of the publication in MAPS. He is professor at the Institute of Geology and Geophysics of the Chinese Academy of Sciences in Beijing and explains: “It could be possible that the organic carbon originated from impacts of carbonaceous chondrite meteorites. However, it is not easy to conceive by which processes chondritic carbon could have been selectively extracted from the impacting carbonaceous chondrites, selectively removed from the soil and later impregnated in the extremely fine rock veins”. Some scientists have argued that the carbon of Tissint was synthesized in a hot magma that intruded into rock fissures. But this possibility could be refuted by the international research group.

Support from the Bayerisches Geoinstitut at the University of Bayreuth

“We appreciate very much and we are quite proud that Prof. Ahmed el Goresy, a long term guest professor at the Bayerisches Geoinstitut (BGI), could contribute substantially to the results being published now”, acclaimed Prof. Dr. Tomo Katsura, the director of the institute. He continues: “At BGI we intend to support his research on meteorites also in the future – both by optimal sample preparation facilities as well as with research technologies that will be applied in investigations of this material, in order to contribute to better understanding about the origin of the organic carbon in Martian meteorites.” “Our excellent preparation laboratory at BGI guarantees that the samples are not contaminated before they are investigated”, adds El Goresy.

Meteorite research: analyses of undestroyed matter

The authors do not see any rivalry between investigations of Mars meteorites and rocks from the surface of Mars that are carried out by the US space agency NASA in the frame-work of the Mars Science Laboratory (MSL). “Mars rovers like ‘Curiosity’ represent a fantastic progress in technology. They do a very good job addressing the question if there are or were suitable conditions on Mars to support life” says El Goresy. “In one sense, however, meteorite research has always been superior so far: Mars rovers collect, pulverize and analyze bulk samples and therefore obtain only average composition data. In contrast microscopic and in situ spectroscopic investigations enable analyses of undestroyed individual carbon grains exactly in the place where they occur”, he explains.

Information on Professor Ahmed El Goresy (in German):

http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2012/277-Leonard-Medaille-2013.pdf

Publication:

Yangting Lin et al.,
NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organic-bearing fluids on Mars,
Meteoritics & Planetary Science, Volume 49, Issue 12, pp 2201–2218, December 2014.
DOI: 10.1111/maps.12389

The following institutions from China, Germany, Japan and Switzerland participated in the research being published here: Chinese Academy of Sciences with geoscientific institutes in Beijing, Guiyang, Guangzhou; Bayerisches Geoinstitut (BGI) / University of Bayreuth; Tohoku University, Sendai; École polytechnique fédérale de Lausanne (EPFL).

Contacts:

Prof. Dr. Ahmed El Goresy
Bayerisches Geoinstitut (BGI)
University of Bayreuth
D-95440 Bayreuth
Telephone: +49 (0)921 553726 (not earlier than 5th Dec.)
Telephone 3rd until 4th Dec:
via Institute of Geoscience, University of Heidelberg: +49 (0)6221 548291
E-Mail: ahmed.elgoresy@uni-bayreuth.de (not earlier than 5th Dec.)
or: christian.wissler@uvw.uni-bayreuth.de (2nd Dec and onwards)

Prof. Dr. Yangting Lin
Institute of Geology and Geophysics,
Chinese Academy of Sciences
P.O. Box 9825
19 Beituchengxi Rd., Beijing 100029, China
Telephone: +86-10-82998413
E-Mail: linyt@mail.igcas.ac.cn

Christian Wißler | Universität Bayreuth

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>