Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Gives Scientists Front-Row Seat to Lightning Strikes

10.09.2013
A device developed at The University of Alabama in Huntsville has become a valuable tool in researchers’ quest to determine how lightning is spawned in clouds, to map strikes from beginning to end and to better predict severe weather.

The Huntsville Alabama Marx Meter Array (HAMMA) sensor literally resides under a large inverted metal salad bowl to protect the electronics from rain. A modern electronic reinvention of a sensor first developed in the 1950s, it detects the radiated electric field in the atmosphere when lightning strikes.


Michael Mercier / UAH

Dr. Phillip Bitzer, an assistant professor of atmospheric science, has installed a HAMMA lightning sensor on the roof of UAH’s National Space Science Technology Center. A still camera is being installed to provide time-lapse photos of weather that will be viewable on the web. Dr. Bitzer also plans to install two high-speed video cameras in this location as well.

“We take the lightning induced change in the electric field and it’s converted to a voltage reading by our equipment and that’s transmitted to our computer,” said Dr. Phillip Bitzer, an assistant professor of atmospheric science, co-developer of the HAMMA device and the lead author of the study showing its usefulness. (“Characterization and application of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array,” Phillip M. Bitzer, Hugh J. Christian, Mike Stewart, Jeff Burchfield, Scott Podgorny, David Corredor, John Hall, Evgeny Kuznetsov, Veronica Franklin; Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 8; April 2013.)

Using the data from a network of HAMMA sensors, the computer generates maps showing the intensity and distribution of the lightning.

VERY LOW FREQUENCY

Operating in the very low frequency (VLF) spectrum, HAMMA can detect both the intensity and duration of a bolt, called its energetics, and provide scientists with more information than previous mapping array instruments, which usually operate in the very high frequency (VHF) spectrum.

VHF equipment is better at detecting the smaller discharge processes from a lightning strike, while the VLF HAMMA device reads large discharges that are associated with more energetic processes, like the bright return stroke, Dr. Bitzer said. “The combination of VLF and VHF measurements may tell us a whole lot more about what is going on in the flash than either one by itself.”

HAMMA may also help with one of the mysteries of nature – exactly how a lightning bolt gets started in the clouds, an event scientists call initiation.

“We really don’t know how initiation works,” said Dr. Bitzer. “One of the big unanswered questions of lightning research is initiation, and that’s one we are interested in. We’re trying to get a handle on how lightning starts. How does all of this work?”

It’s known that lightning is caused by buildup of positive and negative electrical charges inside a cloud. In the cloud, an embryonic version of hail called graupel collides with ice crystals. This collision usually leads to graupel acquiring a negative charge and ice a positive charge. These separate in a thunderstorm updraft to produce the electric field necessary to produce lightning. However, researchers have never measured an electric field sufficiently strong to itself initiate a lightning strike. Something else must happen to trigger the event, and there are two primary theories about that.

The first theory postulates that the electric field is locally enhanced by the hydrometeors in the cloud, thus enabling lightning to initiate. A competing theory suggests that cosmic rays bombarding Earth from outer space initiate lightning by introducing high-energy electrons that begin the cascade leading to a strike. HAMMA now gives researchers a front-row seat to the processes going on at initiation.

“What we’re able to detect is the initiation of the lightning, which is typically about 30 milliseconds ahead of the lightning stroke,” said Dr. Bitzer. This is the point in a lightning strike when the bolt sends down electrical “leaders” that eventually meet with ascending leaders from the Earth to form the pathway the stroke then follows.

“One thing we’ve been able to show is that using VLF measurements in a network like HAMMA can give us a better idea of the location of different-scale processes that occur during initiation,” Dr. Bitzer said. “In addition, you are able to estimate the strength of a flash.”

Historic databases created from past storms can be valuable in predicting the behavior of future ones, Dr. Bitzer said, because there is a significant uptick in lightning strikes that precedes the main event as a storm arrives.

“If you include lightning data with currently used observations, we’re better able to forecast severe weather,” he said. “This system will show whether we are able to incorporate energetics to then increase lead time to predict a severe storm.”

MORE TOOLS AHEAD

UAH researchers are working on more tools to get to the core of the process that causes lightning to strike, including development of a Geostationary Lightning Mapper (GLM). The GLM will allow UAH scientists to view storms from space in a geostationary orbit ¬–a fixed position relative to Earth – providing unprecedented ability to track lightning activity.

Similar measurements are currently provided by the Lightning Imaging Sensor (LIS); however, this instrument is on a satellite that is in low-earth orbit, which means it is unable to track changes in lightning activity over the lifetime of a storm. Another version of LIS built at the same time as the first is scheduled by NASA to be mounted on the International Space Station. UAH engineers are testing and calibrating it now.

In 2015, the GLM will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R) a joint effort between NASA and the National Oceanic and Atmospheric Administration (NOAA). Engineers at UAH are helping to build GLM and UAH scientists are working on how the GLM will gather information. Other UAH researchers are working on how to transition the gathered data to weather forecasters in a form that is most useful to them for predictions.

HAMMA will play a key role in validating GLM performance and further understanding of the data it provides. The measurements from space are well correlated to VLF measurements that HAMMA provides. “HAMMA is a great complement to all the lightning research UAH is actively pursuing,” Dr. Bitzer said.

Dr. Phillip Bitzer
pm.bitzer@uah.edu
256-961-7948
OR
Jim Steele
jim.steele@uah.edu
256-824-2772

Dr. Phillip Bitzer | Newswise
Further information:
http://www.uah.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>