Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the detergent of the atmosphere is regenerated

07.10.2013
Juelich troposphere researchers demonstrate effective recycling of radicals during isoprene degradation

Hydroxyl (OH) radicals – known as the detergent of the atmosphere – decompose isoprene in the air. This leads to the creation of new OH radicals, which are then able to purify the air of other pollutants and trace gases. The scientific community had previously only been able to speculate about this mechanism.


The large atmosphere simulation chamber SAPHIR provides a platform for reproducible studies of well-defined atmospheric-chemical mechanisms.

Credit: Forschungszentrum Jülich

The atmosphere has an astonishing ability to cleanse itself. Chemical processes ensure that trace gases and pollutants are removed from the atmosphere – such as isoprene, which is largely produced by forests. Without these processes global warming would be even more severe and , air quality much poorer. Just a few years ago, scientists thought that the degradation of isoprene considerably reduced the concentration of OH radicals.

During studies in China, troposphere researchers from Jülich's Institute of Energy and Climate Research simultaneously determined high concentrations of both OH radicals and trace gases such as isoprene. Other research groups made similar observations in the air above North American forests and tropical rainforests. The obvious conclusion was that during isoprene degradation something happens to regenerate the OH radicals.

"In the past few years, there has been an intensive discussion in the scientific community about what this mechanism could be. But without actual proof this remained pure speculation. Now we have succeeded in demonstrating this process," says the Jülich troposphere researcher, Dr. Hendrik Fuchs.

The scientists recreated the natural conditions prevailing in the atmosphere above China and the tropical rainforests in the Jülich simulation chamber, SAPHIR. This chamber enables researchers to simulate the degradation of even slight quantities of trace gases. It is equipped with exactly the same measuring instruments as are used in field experiments. "It is only this particular combination that makes it possible to study the processes precisely. SAPHIR means that we enjoy unique conditions here at Jülich," says head of institute Prof. Andreas Wahner. Jülich scientists were indeed able to confirm the basic principles of this mechanism and to quantify its impact on OH regeneration. The process takes place much faster than thought before, but not so effectively as some researchers had assumed.

Since the degradation process is now understood for isoprene, scientists can begin to quantitatively investigate feedback effects. Relations between self-cleansing processes in the atmosphere and the climate are particularly interesting for the Jülich researchers. More OH radicals in the air mean that more greenhouse gases such as methane can be degraded. Furthermore, in contrast to all other known mechanisms for the degradation of isoprene, less climate-damaging ozone is produced in the atmosphere than previously assumed. Moreover, the effectiveness of the process increases with air temperature. "We may possibly have identified an important interaction between air quality and climate change leading to the accelerated degradation of trace gases in an atmosphere that is heating up," adds the deputy head of institute Dr. Andreas Hofzumahaus.

The Jülich investigations are part of the ongoing EU project PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) concerned with interactions between atmospheric chemistry, air quality and climate.

Original publication:

Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation.
H. Fuchs et al.
Nature Geoscience, published online 6 October 2013, DOI: 10.1038/ngeo1964
Further information:
Institute of Energy and Climate Research – Troposphere (IEK-8)
http://www.fz-juelich.de/iek/iek-8/EN/Home/home_node.html
SAPHIR atmospheric simulation chamber
http://www.fz-juelich.de/iek/iek-8/EN/Expertise/Infrastructure/SAPHIR/SAPHIR_node.html
EU PEGASOS project
http://www.fz-juelich.de/iek/iek-8/EN/AboutUs/Projects/PEGASOS/PEGASOS_node.html
Contact:
Dr. Hendrik Fuchs
Institute of Energy and Climate Research – Troposphere (IEK-8)
Forschungszentrum Jülich
Tel: +49 2461 61-6741
h.fuchs@fz-juelich.de
Press contact:
Annette Stettien, Forschungszentrum Jülich
Tel: +49 2461 61-2388
a.stettien@fz-juelich.de

Dr. Hendrik Fuchs | EurekAlert!
Further information:
http://www.fz-juelich.de

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>