Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deepest Core Drilled from Antarctic Peninsula: May Contain Glacial Stage Ice

14.04.2010
Researchers here are hopeful that the new core they drilled through an ice field on the Antarctic Peninsula will contain ice dating back into the last ice age. If so, that record should give new insight into past global climate changes.

The expedition in early winter to the Bruce Plateau, an ice field straddling a narrow ridge on the northernmost tongue of the southernmost continent, yielded a core that was 445.6 meters (1,462 feet) long, the longest yet recovered from that region of Antarctica.

And while remarkably successful, the field work tested the researchers’ resilience more than most of their previous expeditions.

“It was the field season from hell,” explained Ellen Mosley-Thompson, professor of geography at Ohio State University and leader of the project. “Everything that could go wrong did, and almost everything that could break did.”

Bad weather delayed their transport to the remote drill site and snowstorms were a recurrent problem, preventing support flights in to the team. Twice, their drills became stuck deep in the ice, a drill motor broke and all three of the drill gearboxes failed, causing them to cannibalize those devices to construct a new one.

Their ice core drilling effort was part of the much larger Larsen Ice Shelf System, Antarctica (LARISSA) project, designed to unravel past climate conditions in this part of the continent and monitor current ocean and atmospheric processes to better understand what likely caused portions of the massive Larsen Ice Shelf to disintegrate in 2002.

This large, interdisciplinary National Science Foundation project involved experts in the oceanography, biology and geology of the region, in addition to the ice core effort. The goal is to build a climate history of the region, hopefully determining if the ice shelf break-up was part of a long-term natural cycle or linked to the recent warming in this part of the world.

After an earlier team of LARISSA researchers had used ground-penetrating radar to map the bedrock under the ice field, and identified a suitable drill site, the six-person team was flown to the Bruce Plateau from the British research station, Rothera, on the west side of the Antarctic Peninsula.

Arriving at the location, the team set up sleeping tents, a cook tent and the large geodesic dome that protected the drilling and core processing operations. The team began drilling on New Year’s Eve, December 31, 2009.

Two days later, the team had drilled 140 meters (459 feet) when the drill became stuck in the ice. Leaving that drill in the ice, they began drilling a second hole and by January 21, they had retrieved 383 meters (1,256 feet) of core before that drill also became stuck.

They modified a device normally used to bale water from the drill hole to carry ethylene glycol (antifreeze) down to the top of the stuck drill. After several days, the drill broke free and drilling resumed.

“The guys on our team, Victor Zagorodnov and Vladimir Mikhalenko, engineered through each problem that arose and were really very creative,” explained Mosley-Thompson, a researcher with Ohio State’s Byrd Polar Research Center.

On January 28th, the team reached THE bedrock AT the bottom of the ice sheet. The same day, they recovered the first drill that had become stuck in early January. Both ice cores were cut into roughly 1-meter-long segments that were packaged in plastic sleeves and cardboard tubes and stored in a snow pit adjacent to the drilling dome.

Periodically, as weather allowed, the planes would come pick up the ice-filled tubes, packed in insulated boxes, and return them to freezers at Rothera. Still stored at the Rothera station, the cores will be transferred to the U.S. research ship Nathaniel B. Palmer, shipped to the U.S. West Coast and brought to Columbus by refrigerated truck. The cores are expected to reach Ohio State by mid-summer.

When the ice arrives, researchers here will begin their analyses, measuring oxygen-isotopic ratios – a proxy for temperature, and concentrations of dust and various chemicals – including volcanic tracers, that collectively will reveal past climate conditions.

They’re hoping for answers to some specific questions:

Have the climate trends around the Antarctic Peninsula been similar or dissimilar to those experienced by the rest of the continent? Some evidence has suggested conditions have been considerably different;

Was the climate on the peninsula warm during the early Holocene period, some 8,000 to 6,000 years ago, as it was elsewhere around the globe?

Can evidence trapped in the ice cores shed light on what caused the Larsen Ice Sheet to begin to disintegrate in recent years?

Do the cores contain ice formed during the last glacial stage, or “ice age”? If so, it might yield clues to what caused the change from those earlier, much colder climate conditions.

“My gut feeling is that the ice at the Bruce Plateau site might have built up during the latter part of the last glacial stage,” Mosley-Thompson said.

“But to date, only two cores drilled in the Antarctic Peninsula, one in 2007 to 363 meters depth by the British Antarctic Survey, and ours, have the potential to answer that question and neither has been analyzed yet to make that determination.”

Along with Mosley-Thompson, Zagorodnov and Mikhalenko, other members of the team included Roberto Filippi, Thair Verzone and Felix Benjamin Vicencio Maguina.

Ellen Mosley-Thompson | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>