Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deepest Core Drilled from Antarctic Peninsula: May Contain Glacial Stage Ice

14.04.2010
Researchers here are hopeful that the new core they drilled through an ice field on the Antarctic Peninsula will contain ice dating back into the last ice age. If so, that record should give new insight into past global climate changes.

The expedition in early winter to the Bruce Plateau, an ice field straddling a narrow ridge on the northernmost tongue of the southernmost continent, yielded a core that was 445.6 meters (1,462 feet) long, the longest yet recovered from that region of Antarctica.

And while remarkably successful, the field work tested the researchers’ resilience more than most of their previous expeditions.

“It was the field season from hell,” explained Ellen Mosley-Thompson, professor of geography at Ohio State University and leader of the project. “Everything that could go wrong did, and almost everything that could break did.”

Bad weather delayed their transport to the remote drill site and snowstorms were a recurrent problem, preventing support flights in to the team. Twice, their drills became stuck deep in the ice, a drill motor broke and all three of the drill gearboxes failed, causing them to cannibalize those devices to construct a new one.

Their ice core drilling effort was part of the much larger Larsen Ice Shelf System, Antarctica (LARISSA) project, designed to unravel past climate conditions in this part of the continent and monitor current ocean and atmospheric processes to better understand what likely caused portions of the massive Larsen Ice Shelf to disintegrate in 2002.

This large, interdisciplinary National Science Foundation project involved experts in the oceanography, biology and geology of the region, in addition to the ice core effort. The goal is to build a climate history of the region, hopefully determining if the ice shelf break-up was part of a long-term natural cycle or linked to the recent warming in this part of the world.

After an earlier team of LARISSA researchers had used ground-penetrating radar to map the bedrock under the ice field, and identified a suitable drill site, the six-person team was flown to the Bruce Plateau from the British research station, Rothera, on the west side of the Antarctic Peninsula.

Arriving at the location, the team set up sleeping tents, a cook tent and the large geodesic dome that protected the drilling and core processing operations. The team began drilling on New Year’s Eve, December 31, 2009.

Two days later, the team had drilled 140 meters (459 feet) when the drill became stuck in the ice. Leaving that drill in the ice, they began drilling a second hole and by January 21, they had retrieved 383 meters (1,256 feet) of core before that drill also became stuck.

They modified a device normally used to bale water from the drill hole to carry ethylene glycol (antifreeze) down to the top of the stuck drill. After several days, the drill broke free and drilling resumed.

“The guys on our team, Victor Zagorodnov and Vladimir Mikhalenko, engineered through each problem that arose and were really very creative,” explained Mosley-Thompson, a researcher with Ohio State’s Byrd Polar Research Center.

On January 28th, the team reached THE bedrock AT the bottom of the ice sheet. The same day, they recovered the first drill that had become stuck in early January. Both ice cores were cut into roughly 1-meter-long segments that were packaged in plastic sleeves and cardboard tubes and stored in a snow pit adjacent to the drilling dome.

Periodically, as weather allowed, the planes would come pick up the ice-filled tubes, packed in insulated boxes, and return them to freezers at Rothera. Still stored at the Rothera station, the cores will be transferred to the U.S. research ship Nathaniel B. Palmer, shipped to the U.S. West Coast and brought to Columbus by refrigerated truck. The cores are expected to reach Ohio State by mid-summer.

When the ice arrives, researchers here will begin their analyses, measuring oxygen-isotopic ratios – a proxy for temperature, and concentrations of dust and various chemicals – including volcanic tracers, that collectively will reveal past climate conditions.

They’re hoping for answers to some specific questions:

Have the climate trends around the Antarctic Peninsula been similar or dissimilar to those experienced by the rest of the continent? Some evidence has suggested conditions have been considerably different;

Was the climate on the peninsula warm during the early Holocene period, some 8,000 to 6,000 years ago, as it was elsewhere around the globe?

Can evidence trapped in the ice cores shed light on what caused the Larsen Ice Sheet to begin to disintegrate in recent years?

Do the cores contain ice formed during the last glacial stage, or “ice age”? If so, it might yield clues to what caused the change from those earlier, much colder climate conditions.

“My gut feeling is that the ice at the Bruce Plateau site might have built up during the latter part of the last glacial stage,” Mosley-Thompson said.

“But to date, only two cores drilled in the Antarctic Peninsula, one in 2007 to 363 meters depth by the British Antarctic Survey, and ours, have the potential to answer that question and neither has been analyzed yet to make that determination.”

Along with Mosley-Thompson, Zagorodnov and Mikhalenko, other members of the team included Roberto Filippi, Thair Verzone and Felix Benjamin Vicencio Maguina.

Ellen Mosley-Thompson | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>