Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep sedimentation of acantharian cysts -- a reproductive strategy?

09.03.2010
Acantharian cyst sedimentation

Spore-like reproductive cysts of enigmatic organisms called acantharians rapidly sink from surface waters to the deep ocean in certain regions, according to new research. Scientists suspect that this is part of an extraordinary reproductive strategy, which allows juveniles to exploit a seasonal food bonanza.

The research shows that deep sedimentation of cysts during the spring delivers significant amounts of organic matter to the ocean depths, providing a potential source of nutrients for creatures of the deep.

"Although acantharians are known to contribute to organic matter transport at shallower depths, we were amazed to discover a high flux of their spore-like reproductive cysts in the deep ocean," says PhD student Patrick Martin of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

Cysts were found in sediment trap samples recovered from a depth of 2000 metres in the Iceland Basin, a deep region of the Atlantic Ocean south of Iceland. The traps were deployed in 2006 from the Royal Research Ship Discovery to collect sinking organic-rich particles. Such particles comprise part of the biological carbon pump, whereby carbon 'fixed' from carbon dioxide by photosynthetic organisms in sunlit surfaces waters is exported to the deep ocean.

Although single celled and known mainly to specialists, acantharians are globally distributed and often very abundant. Adults are found mainly in the top 300 metres, where symbiotic algae living within them contribute to primary productivity through photosynthesis.

Uniquely, the spiny skeletons and cyst shells of acantharians are composed of crystalline strontium sulphate, known as celestite, precipitated from seawater in the upper ocean. Celestite is the densest known marine biomineral, but it readily dissolves in seawater, thereby releasing strontium back into the seawater.

"Celestite ballast causes rapid sinking. The cysts we found in the Iceland Basin are larger than reported from other regions, up to a millimetre long, and thus sink faster. We believe that this allows them to reach considerable depths before their celestite shells dissolve," says Patrick Martin.

This is consistent with changes in seawater strontium concentration with depth, measured by other scientists in the Iceland Basin. Similar measurements suggest that acantharian cysts in the subarctic Pacific may also sink to great depths.

Acantharian cyst flux in the Iceland Basin was restricted to April and May. It contributed up to around half the particulate organic matter found in the traps during the two weeks of highest cyst flux, albeit with considerable variation between samples.

Evidence suggests that, at high latitudes, rapid, deep sedimentation of acantharian cysts recurs each spring. The cysts sink to depth to release gametes and then die. Juveniles may then descend to the seafloor before ascending to the surface as they mature.

The deep flux of cysts coincides with the spring bloom of phytoplankton, the tiny marine algae that dominate primary production in sunlit surface waters.

"We speculate that this is part of a reproductive strategy allowing juveniles to feed off the remains of phytoplankton, 'phytodetritus', that rapidly sinks to the seafloor following the spring bloom," says Patrick Martin.

In that case, deep sedimentation of cysts could be regarded as an adaptation to life in highly seasonal environments, leading to the expectation that the phenomenon should occur in other high-latitude ocean regions.

Publication:

Martin, P., Allen, J. T., Cooper, M. J., Johns, D. G., Lampitt, R. S., Sanders, R. & Teagle, D. A. H. Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnol. Oceanogr. 55(2), 604-614 (2010).

This study was funded by the Natural Environment Research Council, UK, as part of the Oceans 2025 program.

The authors are Patrick Martin, John Allen, Matthew Cooper, Richard Lampitt, Richard Sanders and Damon Teagle (all of NOCS), and David Johns (Sir Alister Hardy Foundation for Ocean Science, Plymouth).

The National Oceanography Centre, Southampton (NOCS) is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the Centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The NOCS is a collaboration between the University of Southampton and the Natural Environment Research Council (NERC). The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS, as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

From April 1, 2010, NERC-managed activity at the NOCS joins forces with the Proudman Oceanographic Laboratory in Liverpool to form a new, national research organisation - the National Oceanography Centre (NOC). The NOC will work in partnership with the UK marine research community to deliver integrated marine science and technology from the coast to the deep ocean. The University of Southampton will be one of the NOC's two hosting partners, the other being the University of Liverpool.

Dr Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>