Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep sedimentation of acantharian cysts -- a reproductive strategy?

09.03.2010
Acantharian cyst sedimentation

Spore-like reproductive cysts of enigmatic organisms called acantharians rapidly sink from surface waters to the deep ocean in certain regions, according to new research. Scientists suspect that this is part of an extraordinary reproductive strategy, which allows juveniles to exploit a seasonal food bonanza.

The research shows that deep sedimentation of cysts during the spring delivers significant amounts of organic matter to the ocean depths, providing a potential source of nutrients for creatures of the deep.

"Although acantharians are known to contribute to organic matter transport at shallower depths, we were amazed to discover a high flux of their spore-like reproductive cysts in the deep ocean," says PhD student Patrick Martin of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

Cysts were found in sediment trap samples recovered from a depth of 2000 metres in the Iceland Basin, a deep region of the Atlantic Ocean south of Iceland. The traps were deployed in 2006 from the Royal Research Ship Discovery to collect sinking organic-rich particles. Such particles comprise part of the biological carbon pump, whereby carbon 'fixed' from carbon dioxide by photosynthetic organisms in sunlit surfaces waters is exported to the deep ocean.

Although single celled and known mainly to specialists, acantharians are globally distributed and often very abundant. Adults are found mainly in the top 300 metres, where symbiotic algae living within them contribute to primary productivity through photosynthesis.

Uniquely, the spiny skeletons and cyst shells of acantharians are composed of crystalline strontium sulphate, known as celestite, precipitated from seawater in the upper ocean. Celestite is the densest known marine biomineral, but it readily dissolves in seawater, thereby releasing strontium back into the seawater.

"Celestite ballast causes rapid sinking. The cysts we found in the Iceland Basin are larger than reported from other regions, up to a millimetre long, and thus sink faster. We believe that this allows them to reach considerable depths before their celestite shells dissolve," says Patrick Martin.

This is consistent with changes in seawater strontium concentration with depth, measured by other scientists in the Iceland Basin. Similar measurements suggest that acantharian cysts in the subarctic Pacific may also sink to great depths.

Acantharian cyst flux in the Iceland Basin was restricted to April and May. It contributed up to around half the particulate organic matter found in the traps during the two weeks of highest cyst flux, albeit with considerable variation between samples.

Evidence suggests that, at high latitudes, rapid, deep sedimentation of acantharian cysts recurs each spring. The cysts sink to depth to release gametes and then die. Juveniles may then descend to the seafloor before ascending to the surface as they mature.

The deep flux of cysts coincides with the spring bloom of phytoplankton, the tiny marine algae that dominate primary production in sunlit surface waters.

"We speculate that this is part of a reproductive strategy allowing juveniles to feed off the remains of phytoplankton, 'phytodetritus', that rapidly sinks to the seafloor following the spring bloom," says Patrick Martin.

In that case, deep sedimentation of cysts could be regarded as an adaptation to life in highly seasonal environments, leading to the expectation that the phenomenon should occur in other high-latitude ocean regions.

Publication:

Martin, P., Allen, J. T., Cooper, M. J., Johns, D. G., Lampitt, R. S., Sanders, R. & Teagle, D. A. H. Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnol. Oceanogr. 55(2), 604-614 (2010).

This study was funded by the Natural Environment Research Council, UK, as part of the Oceans 2025 program.

The authors are Patrick Martin, John Allen, Matthew Cooper, Richard Lampitt, Richard Sanders and Damon Teagle (all of NOCS), and David Johns (Sir Alister Hardy Foundation for Ocean Science, Plymouth).

The National Oceanography Centre, Southampton (NOCS) is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the Centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The NOCS is a collaboration between the University of Southampton and the Natural Environment Research Council (NERC). The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS, as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

From April 1, 2010, NERC-managed activity at the NOCS joins forces with the Proudman Oceanographic Laboratory in Liverpool to form a new, national research organisation - the National Oceanography Centre (NOC). The NOC will work in partnership with the UK marine research community to deliver integrated marine science and technology from the coast to the deep ocean. The University of Southampton will be one of the NOC's two hosting partners, the other being the University of Liverpool.

Dr Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>