Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea rocks point to early oxygen on Earth

26.03.2009
Red jasper cored from layers 3.46 billion years old suggests that not only did the oceans contain abundant oxygen then, but that the atmosphere was as oxygen rich as it is today, according to geologists.

This jasper or hematite-rich chert formed in ways similar to the way this rock forms around hydrothermal vents in the deep oceans today.

"Many people have assumed that the hematite in ancient rocks formed by the oxidation of siderite in the modern atmosphere," said Hiroshi Ohmoto, professor of geochemistry, Penn State. "That is why we wanted to drill deeper, below the water table and recover unweathered rocks."

The researchers drilled diagonally into the base of a hill in the Pilbara Craton in northwest Western Australia to obtain samples of jasper that could not have been exposed to the atmosphere or water. These jaspers could be dated to 3.46 billion years ago.

"Everyone agrees that this jasper is 3.46 billion years old," said Ohmoto. "If hematite were formed by the oxidation of siderite at any time, the hematite would be found on the outside of the siderite, but it is found inside," he reported in a recent issue of Nature Geoscience.

The next step was to determine if the hematite formed near the water's surface or in the depths. Iron compounds exposed to ultra violet light can form ferric hydroxide, which can sink to the bottom as tiny particles and then converted to hematite at temperatures of at least 140 degrees Fahrenheit.

"There are a number of cases around the world where hematite is formed in this way," says Ohmoto. "So just because there is hematite, there is not necessarily oxygen in the water or the atmosphere."

The key to determining if ultra violet light or oxygen formed the hematite is the crystalline structure of the hematite itself. If the precursors of hematite were formed at the surface, the crystalline structure of the rock would have formed from small particles aggregating producing large crystals with lots of empty spaces between. Using transmission electron microscopy, the researchers did not find that crystalline structure.

"We found that the hematite from this core was made of a single crystal and therefore was not hematite made by ultra violet radiation," said Ohmoto.

This could only happen if the deep ocean contained oxygen and the iron rich fluids came into contact at high temperatures. Ohmoto and his team believe that this specific layer of hematite formed when a plume of heated water, like those found today at hydrothermal vents, converted the iron compounds into hematite using oxygen dissolved in the deep ocean water.

"This explains why this hematite is only found in areas with active submarine volcanism," said Ohmoto. "It also means that there was oxygen in the atmosphere 3.46 billion years ago, because the only mechanism for oxygen to exist in the deep oceans is for there to be oxygen in the atmosphere."

In fact, the researchers suggest that to have sufficient oxygen at depth, there had to be as much oxygen in the atmosphere 3.46 billion years ago as there is in today's atmosphere. To have this amount of oxygen, the Earth must have had oxygen producing organisms like cyanobacteria actively producing it, placing these organisms much earlier in Earth's history than previously thought.

"Usually, we look at the remnant of what we think is biological activity to understand the Earth's biology," said Ohmoto. "Our approach is unique because we look at the mineral ferric oxide to decipher biological activity."

Ohmoto suggests that this approach eliminates the problems trying to decide if carbon residues found in sediments were biologically created or simply chemical artifacts.

Other researchers on the study included who included Masamichi Hoashi, graduate student at Kagoshima University, Japan; Arthur H. Hickman, geologist with ths Geological Survey of Western Australia; Satoshi Utsunomiya, Kyushu University, Japan, and David C. Bevacqua and Tsubasa Otake, former Penn State master's and doctoral students, Penn State; and Yumiko Watanabe, research associate, Penn State.

The NASA Astrobiology Institute supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>